Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Inducing Taxonomy from Tags: An Agglomerative Hierarchical Clustering Framework

  • Conference paper
Advanced Data Mining and Applications (ADMA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7713))

Included in the following conference series:

Abstract

By amassing ‘wisdom of the crowd’, social tagging systems draw more and more academic attention in interpreting Internet folk knowledge. In order to uncover their hidden semantics, several researches have attempted to induce an ontology-like taxonomy from tags. As far as we know, these methods all need to compute an overall or relative generality for each tag, which is difficult and error-prone. In this paper, we propose an agglomerative hierarchical clustering framework which relies only on how similar every two tags are. We enhance our framework by integrating it with a topic model to capture thematic correlations among tags. By experimenting on a designated online tagging system, we show that our method can disclose new semantic structures that supplement the output of previous approaches. Finally, we demonstrate the effectiveness of our method with quantitative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Staab, S., Studer, R. (eds.): Handbook on Ontologies, 2nd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  2. Liu, K., Fang, B., Zhang, W.: Ontology emergence from folksonomies. In: Huang, J., Koudas, N., Jones, G.J.F., Wu, X., Collins-Thompson, K., An, A. (eds.) CIKM, pp. 1109–1118. ACM (2010)

    Google Scholar 

  3. Tang, J., Leung, H.-F., Luo, Q., Chen, D., Gong, J.: Towards ontology learning from folksonomies. In: Boutilier, C. (ed.) IJCAI, pp. 2089–2094 (2009)

    Google Scholar 

  4. Wang, W., Barnaghi, P.M., Bargiela, A.: Probabilistic topic models for learning terminological ontologies. IEEE Trans. Knowl. Data Eng. 22(7), 1028–1040 (2010)

    Article  Google Scholar 

  5. Navigli, R., Velardi, P., Faralli, S.: A graph-based algorithm for inducing lexical taxonomies from scratch. In: Walsh, T. (ed.) IJCAI, pp. 1872–1877. IJCAI/AAAI (2011)

    Google Scholar 

  6. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3rd internat edn. Pearson Education (2010)

    Google Scholar 

  7. Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical report, Computer Science Department, Standford University (April 2006)

    Google Scholar 

  8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  9. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. In: NIPS (2005)

    Google Scholar 

  10. Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW, pp. 625–632. ACM (2006)

    Google Scholar 

  11. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2005)

    Google Scholar 

  12. Blei, D.M., McAuliffe, J.D.: Supervised topic models. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) NIPS. Curran Associates, Inc. (2007)

    Google Scholar 

  13. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. J. ACM 57(2) (2010)

    Google Scholar 

  14. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Science 101, 5228–5235 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X. et al. (2012). Inducing Taxonomy from Tags: An Agglomerative Hierarchical Clustering Framework. In: Zhou, S., Zhang, S., Karypis, G. (eds) Advanced Data Mining and Applications. ADMA 2012. Lecture Notes in Computer Science(), vol 7713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35527-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35527-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35526-4

  • Online ISBN: 978-3-642-35527-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics