Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Particle Swarm Optimization for Image Regions Annotation

  • Conference paper
Future Generation Information Technology (FGIT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7709))

Included in the following conference series:

Abstract

In this paper, we propose an automatic image annotation approach for region labeling that takes advantage of both context and semantics present in segmented images. The proposed approach is based on multi-class K-nearest neighbor, k-means and particle swarm optimization (PSO) algorithms for feature weighting, in conjunction with normalized cuts-based image segmentation technique. This hybrid approach refines the output of multi-class classification that is based on the usage of K-nearest neighbor classifier for automatically labeling images regions from different classes. Each input image is segmented using the normalized cuts segmentation algorithm then a descriptor created for each segment. The PSO algorithm is employed as a search strategy for identifying an optimal feature subset. Extensive experimental results demonstrate that the proposed approach provides an increase in accuracy of annotation performance by about 40%, via applying PSO models, compared to having no PSO models applied, for the used dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  2. Trelea, I.C.: The Particle Swarm Optimization Algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2003)

    Article  Google Scholar 

  4. Sami, M., El-Bendary, N., Hassanien, A.E., Schaefer, G.: Hybrid Intelligent Automatic Image Annotation Using Machine Learning. In: The 2011 Online Conference on Soft Computing in Industrial Applications WWW (WSC16) (2011)

    Google Scholar 

  5. Viswanath, P., Sarma, T.H.: An improvement to k-nearest neighbor classifier. In: Proceedings of IEEE Int. Conference on Recent Advances in Intelligent Computational Systems (RAICS), pp. 227–231 (2011)

    Google Scholar 

  6. Qiang, H., Aibing, J., Qiang, H.: Multiple Real-valued K nearest neighbor classifiers system by feature grouping. In: Proceedings of IEEE International Conference on Systems Man and Cybernetics (SMC), pp. 3922–3925 (2010)

    Google Scholar 

  7. Lin, L., Qi, L., Jun-yong, L., Chuan, L.: An improved particle swarm optimization algorithm. In: Proceedings of IEEE International Conference on Granular Computing (GrC 2008), pp. 486–490 (2008)

    Google Scholar 

  8. Castillo, O., Xu, L., Ao, S.I.: Trends in Intelligent Systems and Computer Engineering. Springer (2008)

    Google Scholar 

  9. Cai, W., Wu, J., Chung, A.C.S.: Shape-based image segmentation using normalized cuts. In: IEEE Int. Conference on Image Processing, pp. 1101–1104 (2006)

    Google Scholar 

  10. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  11. Imageclef dataset website, http://www.imageclef.org/datasets

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sami, M., El-Bendary, N., Kim, Th., Hassanien, A.E. (2012). Using Particle Swarm Optimization for Image Regions Annotation. In: Kim, Th., Lee, Yh., Fang, Wc. (eds) Future Generation Information Technology. FGIT 2012. Lecture Notes in Computer Science, vol 7709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35585-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35585-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35584-4

  • Online ISBN: 978-3-642-35585-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics