Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Beyond Kmedoids: Sparse Model Based Medoids Algorithm for Representative Selection

  • Conference paper
Advances in Multimedia Modeling

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7733))

Abstract

We consider the problem of seeking representative subset of dataset, which can efficiently serve as the condensed view of the entire dataset. The Kmedoids algorithm is a commonly used unsupervised method, which selects center points as representatives. Those center points are mainly located in high density areas and surrounded by other data points. However, boundary points in the low density areas, which are useful for classification problem, are usually overlooked. In this paper we propose a sparse model based medoids algorithm (Smedoids) which aims to learn a special dictionary. Each column of this dictionary is a representative data point from the dataset, and each data point of the dataset can be described well by a linear combination of the columns of this dictionary. In this way, center and boundary points are all selected as representatives. Experiments evaluate the performances of our method for finding representatives of real datasets on the image and video summarization problem and the multi-class classification problem, and our method is shown to out-perform state-of-the-art in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical Data Analysis based on L1 Norm. North-Holland, Amsterdam (1987)

    Google Scholar 

  2. Jurie, F., Triggs, B.: Creating Efficient Codebooks for Visual Recognition. In: ICCV (2005)

    Google Scholar 

  3. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science (2007)

    Google Scholar 

  4. Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm for the column subset selection problem. In: Proc. SODA (2009)

    Chapter  Google Scholar 

  5. Balzano, L., Nowak, R., Bajwa, W.: Column subset selection with missing data. In: NIPS Workshop on Low-Rank Methods for Large-Scale Machine Learning (2010)

    Google Scholar 

  6. Tang, S., Zheng, Y.-T., Wang, Y., Chua, T.-S.: Sparse Ensemble Learning for Concept Detection. IEEE Trans on Multimedia 14(1), 43–54 (2012)

    Article  Google Scholar 

  7. Bien, J., Tibshirani, R.: Prototype selection for interpretable classification. The Annals of Applied Statistics (2011)

    Article  MathSciNet  Google Scholar 

  8. Marchiori, E.: Class conditional nearest neighbor for large margin instance selection. IEEE Trans. PAMI 32(2), 364–370 (2010)

    Article  Google Scholar 

  9. Elhamifar, E., Sapiro, G., Vidal, R.: See all by looking at a few: sparse modeling for finding representative objects. In: CVPR (2012)

    Google Scholar 

  10. Aharon, M., Elad, M., Bruckstein, A.M.: The k-svd: An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans. SP 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  11. Ramirez, P., Sprechmann, G.: Classification and Clustering via Dictionary Learning with Structured Incoherence and Shared Features. In: CVPR (2010)

    Google Scholar 

  12. Sprechmann, P., Sapiro, G.: Dictionary Learning and Sparse Coding for Unsupervised Clustering. In: ICASSP (2010)

    Google Scholar 

  13. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer learning from unlabeled data. In: ICML (2007)

    Google Scholar 

  14. Mairal, J., Bach, F., Ponce, J.: Task-driven dictionary learning. IEEE Trans. on PAMI 34(4), 791–804 (2011)

    Article  Google Scholar 

  15. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research 11, 19–609 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. on PAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

  17. Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, Y., Yan, C., Dai, F., Ma, Y.: Efficient Parallel Framework for H.264/AVC Deblocking Filter on Many-core Platform. IEEE Trans. on Multimedia 14(3), 510–524 (2012)

    Article  Google Scholar 

  19. Vidal, R.: Recursive identification of switched ARX systems. Automachine (2008)

    Article  MathSciNet  Google Scholar 

  20. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 3(2), 1–27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Article  Google Scholar 

  21. Hull, J.: A database for handwritten text recognition research. IEEE TPAMI (1994)

    Google Scholar 

  22. Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE TPAMI (2005)

    Google Scholar 

  23. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. on PAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

  24. Wang, M., Hong, R., Li, G., Zha, Z.-J., Yan, S., Chua, T.-S.: Event Driven Web Video Summarization by Tag Localization and Key-Shot Identification. IEEE Trans. on Multimedia 14(4), 975–985 (2012)

    Article  Google Scholar 

  25. Hong, R., Wang, M., Xu, M., Yan, S., Chua, T.-S.: Dynamic Captioning: Video Accessibility Enhancement for Hearing Impairment. In: ACM MM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Tang, S., Liang, F., Zhang, Y., Li, J. (2013). Beyond Kmedoids: Sparse Model Based Medoids Algorithm for Representative Selection. In: Li, S., et al. Advances in Multimedia Modeling. Lecture Notes in Computer Science, vol 7733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35728-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35728-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35727-5

  • Online ISBN: 978-3-642-35728-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics