Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Domain Adaptation by Active Learning

  • Conference paper
Evaluation of Natural Language and Speech Tools for Italian (EVALITA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7689))

  • 748 Accesses

Abstract

We tackled the Evalita 2011 Domain Adaptation task with a strategy of active learning. The DeSR parser can be configured to provide different measures of perplexity in its own ability to parse sentences correctly. After parsing sentences in the target domain, a small number of the sentences with the highest perplexity were selected, revised manually and added to the training corpus in order to build a new parser model incorporating some knowledge from the target domain. The process was repeated a few times for building a new training resource partially adapted to the target domain. Using the new resource we trained three stacked parsers, and their combination was used to produce the final results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atserias, J., Attardi, G., Simi, M., Zaragoza, H.: Active Learning for Building a Corpus of Questions for Parsing. In: Proceedings of LREC 2010, Malta (2010)

    Google Scholar 

  2. Attardi, G.: Experiments with a Multilanguage Non-Projective Dependency Parser. In: Proc. of the Tenth Conference on Natural Language Learning, New York (2006)

    Google Scholar 

  3. Attardi, G., Dell’Orletta, F., Simi, M., Turian, J.: Accurate Dependency Parsing with a Stacked Multilayer Perceptron. In: Proc. of Workshop Evalita 2009 (2009) ISBN 978-88-903581-1-1

    Google Scholar 

  4. Attardi, G., Dell’Orletta, F.: Reverse Revision and Linear Tree Combination for Dependency Parsing. In: Proceedings of NAACL HLT 2009 (2009)

    Google Scholar 

  5. Attardi, G., Simi, M., Zanelli, A.: Tuning DeSR for Dependency Parsing of Italian. In: Working Notes of EVALITA 2011, Rome, Italy, January 24-25 (2012) ISSN 2240-5186

    Google Scholar 

  6. Charniak, E.: Statistical parsing with a context-free grammar and word statistics. In: Proc. AAAI, pp. 598–603 (1997)

    Google Scholar 

  7. Dell’Orletta, F., Marchi, S., Montemagni, S., Venturi, G., Agnoloni, T., Francesconi, T.: Domain Adaptation for Dependency Parsing at Evalita 2011. In: Working Notes of EVALITA 2011, Rome, Italy, January 24-25 (2012) ISSN 2240-5186

    Google Scholar 

  8. McClosky, D., Charniak, E., Johnson, M.: Automatic Domain Adaptation for Parsing. In: Proc. of NAACL – HLT 2010 Conference, Los Angeles, CA (2010)

    Google Scholar 

  9. Nivre, J., Scholz, M.: Deterministic Dependency Parsing of English Text. In: Proc. of COLING 2004, Geneva, Switzerland, pp. 64–70 (2004)

    Google Scholar 

  10. Steedman, M., et al.: CLSP WS-02 Final Report: Semi-Supervised Training for Statistical Parsing. Technical Report, Johns Hopkins University (2003)

    Google Scholar 

  11. Yamada, H., Matsumoto, Y.: Statistical Dependency Analysis with Support Vector Machines. In: Proc. of the 8th International Workshop on Parsing Technologies (IWPT), pp. 195–206 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Attardi, G., Simi, M., Zanelli, A. (2013). Domain Adaptation by Active Learning. In: Magnini, B., Cutugno, F., Falcone, M., Pianta, E. (eds) Evaluation of Natural Language and Speech Tools for Italian. EVALITA 2012. Lecture Notes in Computer Science(), vol 7689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35828-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35828-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35827-2

  • Online ISBN: 978-3-642-35828-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics