Abstract
We describe an efficient parallelization strategy for the discontinuous Galerkin spectral element method, illustrated by a structured grid framework. Target applications are large scale DNS and LES calculations on massively parallel systems. Due to the simple and efficient formulation of the method, a parallelization aiming at one-element-per-processor calculations is feasible; a highly desired feature for emerging multi- and many-core architectures. We show scale-up tests on up to 131,000 processors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)
Black, K.: A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika 35(1), 133–146 (1999)
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Springer (2006)
Fagherazzi, S., Furbish, D., Rasetarinera, P., Hussaini, M.Y.: Application of the discontinuous spectral Galerkin method to groundwater flow. Advances in Water Resourses 27, 129–140 (2004)
Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of gauss and gauss lobatto discontinuous galerkin spectral element methods. SIAM Journal on Scientific Computing 33(5), 2560–2579 (2011)
Gassner, G.J., Hindenlang, F., Munz, C.-D.: A Runge-Kutta based Discontinuous Galerkin Method with Time Accurate Local Time Stepping. In: Advances in Computational Fluid Dynamics, vol. 2, pp. 95–118. World Scientific (2011)
Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous galerkin methods for unsteady problems. Computers & Fluids 61, 86–93 (2012)
Kopriva, D., Woodruff, S., Hussaini, M.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. International Journal for Numerical Methods in Engineering 53 (2002)
Kopriva, D.: Metric identities and the discontinuous spectral element method on curvilinear meshes. Journal of Scientific Computing 26(3), 301–327 (2006), http://dx.doi.org/10.1007/s10915-005-9070-8
Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Springer (2009), http://dx.doi.org/10.1007/978-90-481-2261-5_8
Rasetarinera, P., Kopriva, D., Hussaini, M.: Discontinuous spectral element solution of acoustic radiation from thin airfoils. AIAA Journal 39(11), 2070–2075 (2001)
Restelli, M., Giraldo, F.: A conservative discontinuous Galerkin semi-implicit formulation for the navier-stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comp. 31(3), 2231–2257 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Altmann, C., Beck, A.D., Hindenlang, F., Staudenmaier, M., Gassner, G.J., Munz, CD. (2013). An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element Method. In: Keller, R., Kramer, D., Weiss, JP. (eds) Facing the Multicore-Challenge III. Lecture Notes in Computer Science, vol 7686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35893-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-35893-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35892-0
Online ISBN: 978-3-642-35893-7
eBook Packages: Computer ScienceComputer Science (R0)