Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Maximum Order of a Planar Oclique Is 15

  • Conference paper
Combinatorial Algorithms (IWOCA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7643))

Included in the following conference series:

  • 889 Accesses

Abstract

An oclique is an oriented graph where every pair of distinct non-adjacent vertices are connected by a directed path of length 2. Klostermeyer and MacGillivray conjectured that the maximum order of a planar oclique is 15. In this article we settle that conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sopena, E.: Oriented graph coloring. Discrete Mathematics 229(1-3), 359–369 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Marshall, T.H.: Homomorphism bounds for oriented planar graphs. J. Graph Theory 55, 175–190 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Raspaud, A., Sopena, E.: Good and semi-strong colorings of oriented planar graphs. Inf. Process. Lett. 51(4), 171–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sopena, E.: There exist oriented planar graphs with oriented chromatic number at least sixteen. Inf. Process. Lett. 81(6), 309–312 (2002)

    Article  MathSciNet  Google Scholar 

  5. Klostermeyer, W., MacGillivray, G.: Analogs of cliques for oriented coloring. Discussiones Mathematicae Graph Theory 24(3), 373–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goddard, W., Henning, M.A.: Domination in planar graphs with small diameter. J. Graph Theory 40, 1–25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sen, S. (2012). Maximum Order of a Planar Oclique Is 15. In: Arumugam, S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2012. Lecture Notes in Computer Science, vol 7643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35926-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35926-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35925-5

  • Online ISBN: 978-3-642-35926-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics