Abstract
Data prediction has been emerged as an important way to reduce the number of transmissions in wireless sensor networks(WSNs). This paper proposes a periodic data prediction algorithm called P-DPA in WSNs. The P-DPA takes the potential law hidden in periodicity as a reference to adjust the data prediction, which helps to improve the accuracy of prediction algorithm. The experiments of temperature, humidity and light intensity based on the dataset which comes from the actual data collected from 54 sensors deployed in the Intel Berkeley Research lab proved that the P-DPA has an obvious enhancement to the existing data prediction algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52(12), 2292–2330 (2008)
Pandey, V., Kaur, A., Chand, N.: A review on data aggregation techniques in wireless sensor network. Journal of Electronic and Electrical Engineering 1(2), 01–08 (2010)
Xiang, M., Shi, W.-R.: A cluster data management algorithm based on data correlation of wireless sensor networks. Acta Automatica Sinica 36(9), 1343–1350 (2010)
Vuran, M.C., Akan, Ö.B., Akyildiz, I.F.: Spatio-temporal correlation: theory and applications for wireless sensor networks. Computer Networks 45(3), 245–259 (2004)
Dong, C., Xiuquan, Q., et al.: Mining data correlation from multi-faceted sensor data in the Internet of Things. China Communications 8(1), 132–138 (2011)
Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185–205 (2005)
Hui, C.-L., Cui, L.: Forecast-based temporal data aggregation in wireless sensor networks. Computer Engineering and Applications 43(21), 121–125 (2007)
Gao, H., Guo, W., et al.: Multi-source temporal data aggregation in wireless sensor networks based on gene expression programming. Computer Engineering & Science 31(9), 28–31 (2009)
Guo, W., Xiong, N., Vasilakos, A.V., et al.: Multi-source temporal data aggregation in wireless sensor networks. Wireless personal communications 56(3), 359–370 (2010)
Kusuma, J., Doherty, L., Ramchandran, K.: Distributed compression for sensor networks. In: Proc. Image Processing 2001, Thessaloniki, Greece, pp. 82–85 (2001)
Madden, S., Franklin, M.J., et al.: Tag: a tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review 36(SI), 131–146 (2002)
Sharaf, M.A., Beaver, J., Labrinidis, A., et al.: TiNA: a scheme for temporal coherency aware in network aggregation. In: Proc. the Third ACM International Workshop on Data Engineering for Wireless and Mobile Access, San Diego, USA, pp. 69–76 (2003)
Chu, D., Deshpande, A., et al.: Approximate data collection in sensor networks using probabilistic models. In: Proc. the 22nd International Conference on Data Engineering, Atlanta, USA, pp. 48–53 (2006)
Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Processing approximate aggregate queries in wireless sensor networks. Information Systems 31(8), 770–792 (2006)
Guestrin, C., Bodik, P., Thibaux, R., et al.: Distributed regression: an efficient framework for modeling sensor networks. In: Proc. the Third International Symposium on IPSN, Berkeley, USA, pp. 1–10 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhao, J., Liu, H., Li, Z., Li, W. (2013). Periodic Data Prediction Algorithm in Wireless Sensor Networks. In: Wang, R., Xiao, F. (eds) Advances in Wireless Sensor Networks. CWSN 2012. Communications in Computer and Information Science, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36252-1_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-36252-1_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36251-4
Online ISBN: 978-3-642-36252-1
eBook Packages: Computer ScienceComputer Science (R0)