Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Efficient Pairings on Elliptic Curves over Extension Fields

  • Conference paper
Pairing-Based Cryptography – Pairing 2012 (Pairing 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7708))

Included in the following conference series:

Abstract

In implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairing-friendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on elliptic curves over extension fields from the point of view of accelerating the Miller’s algorithm to present further advantage of pairing-friendly curves over extension fields, not relying on the much faster field arithmetic. We propose new pairings on elliptic curves over extension fields can make better use of the multi-pairing technique for the efficient implementation. By using some implementation skills, our new pairings could be implemented much more efficiently than the optimal ate pairing and the optimal twisted ate pairing on elliptic curves over extension fields. At last, we use the similar method to give more efficient pairings on Estibals’s supersingular curves over composite extension fields in parallel implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, D.V., Paar, C.: Optimal Extension Fields for Fast Arithmetic in Public-Key Algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. Journal of Cryptology 14(3), 153–176 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Bajard, J.C., Imbert, L., Negre, C., Plantard, T.: Efficient multiplication in GF(pk) for elliptic curve cryptography. In: Proceedings of the 16th IEEE Symposium on Computer Arithmetic 2003, pp. 181–187. IEEE (2003)

    Google Scholar 

  4. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Barreto, P.S.L.M., Galbraith, S.D., hÉigeartaigh, C.Ó., Scott, M.: Efficient pairing computation on supersingular abelian varieties. Designs, Codes and Cryptography 42(3), 239–271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benger, N., Charlemagne, M., Freeman, D.M.: On the Security of Pairing-Friendly Abelian Varieties over Non-prime Fields. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 52–65. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Costello, C., Lange, T., Naehrig, M.: Faster Pairing Computations on Curves with High-Degree Twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Costello, C., Stebila, D.: Fixed argument pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 92–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Diem, C.: The GHS attack in odd characteristic. J. Ramanujan Math. Soc. 18(1), 1–32 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Mathematica 147(01), 75–104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Estibals, N.: Compact Hardware for Computing the Tate Pairing over 128-Bit-Security Supersingular Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-Friendly Elliptic Curves. Journal of Cryptology 23(2), 224–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frey, G., Gangl, H.: How to disguise an elliptic curve (Weil descent). In: Talk at ECC 1998, vol. 98 (1998)

    Google Scholar 

  14. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS Weil Descent Attack. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Galbraith, S.D., Smart, N.P.: A Cryptographic Application of Weil Descent. In: Walker, M. (ed.) IMA - Crypto & Coding 1999. LNCS, vol. 1746, pp. 191–200. Springer, Heidelberg (1999)

    Google Scholar 

  16. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. Journal of Symbolic Computation 44(12), 1690–1702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil descent on elliptic curves. Journal of Cryptology 15(1), 19–46 (2002)

    Article  MathSciNet  Google Scholar 

  18. Granger, R.: On the Static Diffie-Hellman Problem on Elliptic Curves over Extension Fields. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 283–302. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Granger, R., Smart, N.P.: On computing products of pairings. Cryptology ePrint Archive Report 2006/172 (2006), Preprint available at http://eprint.iacr.org/2006/172

  20. Hess, F.: Generalising the GHS attack on the elliptic curve discrete logarithm problem. LMS Journal of Computation and Mathematics 7(1), 167–192 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Hess, F.: Pairing Lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans. on Information Theory 52(10), 4595–4602 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hitt, L.: On the Minimal Embedding Field. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 294–301. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Joux, A., Vitse, V.: Elliptic Curve Discrete Logarithm Problem over Small Degree Extension Fields. Application to the static Diffie-Hellman problem on \(E(\mathbb{F}_{q^5})\). Cryptology ePrint Archive, Report 2010/157 (2010), Preprint available at http://eprint.iacr.org/2010/157

  25. Koblitz, N., Menezes, A.: Pairing-Based Cryptography at High Security Levels. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on abelian varieties. IEEE Trans. on Information Theory 55(4), 1793–1803 (2009)

    Article  Google Scholar 

  27. Lim, C.H., Hwang, H.S.: Fast Implementation of Elliptic Curve Arithmetic in GF(p n). In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 405–421. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  28. Menezes, A., Teske, E.: Cryptographic implications of Hess’ generalized GHS attack. Applicable Algebra in Engineering, Communication and Computing 16(6), 439–460 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miller, V.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17(4), 235–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sakemi, Y., Takeuchi, S., Nogami, Y., Morikawa, Y.: Accelerating Twisted Ate Pairing with Frobenius Map, Small Scalar Multiplication, and Multi-pairing. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 47–64. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Scott, M.: Computing the Tate Pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Scott, M.: On the Efficient Implementation of Pairing-Based Protocols. In: Chen, L. (ed.) Cryptography and Coding 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Vercauteren, F.: Optimal Pairings. IEEE Trans. on Information Theory 56(1), 455–461 (2010)

    Article  MathSciNet  Google Scholar 

  34. Zhang, X., Lin, D.: Efficient Pairing Computation on Ordinary Elliptic Curves of Embedding Degree 1 and 2. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 309–326. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Wang, K., Lin, D. (2013). On Efficient Pairings on Elliptic Curves over Extension Fields. In: Abdalla, M., Lange, T. (eds) Pairing-Based Cryptography – Pairing 2012. Pairing 2012. Lecture Notes in Computer Science, vol 7708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36334-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36334-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36333-7

  • Online ISBN: 978-3-642-36334-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics