Abstract
Recently, Stange proposed a new algorithm to compute the Tate pairing on an elliptic curve. Her algorithm is based on elliptic nets, which are also defined by Stange as a generalization of elliptic divisibility sequences. In this paper, we define hyperelliptic nets as a generalization of elliptic nets to hyperelliptic curves. We also give an expression for the Tate-Lichtenbaum pairing on a hyperelliptic curve in terms of hyperelliptic nets. Using this expression, we give an algorithm to compute the Tate-Lichtenbaum pairing on a hyperelliptic curve of genus 2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arledge, J., Grant, D.: An explicit theorem of the square for hyperelliptic Jacobians. Michigan Math. J. 49, 485–492 (2001)
Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 21. Springer, Berlin (1990)
Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: Kleinian functions, hyperelliptic Jacobians and applications. Rev. Math. Math. Phys. 10, 1–125 (1997)
Buchstaber, V.M., Enolskii, V.Z., Leykin, D.V.: A recursive family of differential polynomials generated by the Sylvester identity and addition theorems for hyperelliptic Kleinian functions. Funct. Anal. Appl. 31, 240–251 (1997)
Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S.L., Nitsure, N., Vistoli, A.: Fundamental Algebraic Geometry: Grothendieck’s FGA explained. Mathematical Surveys and Monographs, vol. 123. American Mathematical Society, Providence (2005)
Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Math. Comp. 62, 865–874 (1994)
Hone, A.N.W.: Analytic solutions and integrability for bilinear recurrences of order six. Appl. Anal. 89, 473–492 (2010)
Kanayama, N.: Division polynomials and multiplication formulae of Jacobian varieties of dimension 2. Math. Proc. Cambridge Philos. Soc. 139, 399–409 (2005)
Kanayama, N.: Corrections to “Division polynomials and multiplication formulae in dimension 2”. Math. Proc. Cambridge Philos. Soc. 149, 189–192 (2010)
Lichtenbaum, S.: Duality theorems for curves over p-adic fields. Invent. Math. 7, 120–136 (1969)
Maxima.sourceforge.net: Maxima, a Computer Algebra System. Version 5.25.1 (2011), http://maxima.sourceforge.net/
Miller, V.S.: Short programs for functions on curves (1986) (unpublished manuscript), http://crypto.stanford.edu/miller/
Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptology 17, 235–261 (2004)
Mumford, D.: Tata Lectures on Theta I. Progress in Mathematics, vol. 28. Birkhäuser, Boston (1983)
Mumford, D.: Tata Lectures on Theta II. Progress in Mathematics, vol. 43. Birkhäuser, Boston (1984)
Ônishi, Y.: Determinant expressions for hyperelliptic functions (with an appendix by Shigeki Matsutani). Proc. Edinb. Math. Soc. 48, 705–742 (2005)
Stange, K.E.: The Tate Pairing Via Elliptic Nets. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 329–348. Springer, Heidelberg (2007)
Stange, K.E.: Elliptic nets and elliptic curves. Algebra Number Theory 5, 197–229 (2011)
Uchida, Y.: Division polynomials and canonical local heights on hyperelliptic Jacobians. Manuscripta Math. 134, 273–308 (2011)
PARI/GP, version 2.3.4, Bordeaux (2008), http://pari.math.u-bordeaux.fr/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Uchida, Y., Uchiyama, S. (2013). The Tate-Lichtenbaum Pairing on a Hyperelliptic Curve via Hyperelliptic Nets. In: Abdalla, M., Lange, T. (eds) Pairing-Based Cryptography – Pairing 2012. Pairing 2012. Lecture Notes in Computer Science, vol 7708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36334-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-36334-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36333-7
Online ISBN: 978-3-642-36334-4
eBook Packages: Computer ScienceComputer Science (R0)