Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Current-Based 4D Shape Analysis for the Mechanical Personalization of Heart Models

  • Conference paper
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (MCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7766))

Included in the following conference series:

Abstract

Patient-specific models of the heart may lead to better understanding of cardiovascular diseases and better planning of therapy. A machine-learning approach to the personalization of an electro-mechanical model of the heart, from the kinematics of the endo- and epicardium, is presented in this paper. We use 4D mathematical currents to encapsulate information about the shape and deformation of the heart. The method is largely insensitive to initialization and does not require on-line simulation of the cardiac function. In this work, we demonstrate the performance of our approach for the joint estimation of three parameters on one heart geometry. We manage to retrieve parameters such that the model matches the 4D observations with an accuracy below the voxel size, in less than three minutes of computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Harvard University (1951)

    Google Scholar 

  2. Bestel, J., Clément, F., Sorine, M.: A Biomechanical Model of Muscle Contraction. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1159–1161. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Chabiniok, R., Moireau, P., Lesault, P.F., Rahmouni, A., Deux, J.F., Chapelle, D.: Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomechanics and Modeling in Mechanobiology 11(5), 609–630 (2012)

    Article  Google Scholar 

  4. Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: An energy-preserving muscle tissue model: formulation and compatible discretizations. IJMCE 10(2), 189–211 (2012)

    Google Scholar 

  5. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constructive Approximation 13(1), 57–98 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Delingette, H., Billet, F., Wong, K., Sermesant, M., Rhode, K., Ginks, M., Rinaldi, C., Razavi, R., Ayache, N., et al.: Personalization of Cardiac Motion and Contractility from Images using Variational Data Assimilation. IEEE Trans. Biomed. Eng. 59(1), 20 (2012)

    Article  Google Scholar 

  7. Durrleman, S.: Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Ph.D. Thesis, INRIA (March 2010)

    Google Scholar 

  8. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Measuring Brain Variability Via Sulcal Lines Registration: A Diffeomorphic Approach. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 675–682. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Sparse Approximation of Currents for Statistics on Curves and Surfaces. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 390–398. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gärtner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Proceedings of the 19th International Conference on Machine Learning, pp. 179–186 (2002)

    Google Scholar 

  11. Haussler, D.: Convolution kernels on discrete structures. Tech. rep., Technical report, UC Santa Cruz (1999)

    Google Scholar 

  12. Hoerl, A., Kennard, R.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics pp. 55–67 (1970)

    Google Scholar 

  13. Imperiale, A., Chabiniok, R., Moireau, P., Chapelle, D.: Constitutive Parameter Estimation Methodology Using Tagged-MRI Data. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 409–417. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Liu, H., Shi, P.: Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart. IEEE Trans. Biomed. Eng. 56(2), 378–389 (2009)

    Article  Google Scholar 

  15. Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: ilogdemons: A demons-based registration algorithm for tracking incompressible elastic biological tissues. International Journal of Computer Vision 92(1), 92–111 (2011)

    Article  Google Scholar 

  16. Marchesseau, S., Delingette, H., Sermesant, M., Rhode, K., Duckett, S.G., Rinaldi, C.A., Razavi, R., Ayache, N.: Cardiac Mechanical Parameter Calibration Based on the Unscented Transform. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 41–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Schölkopf, B., Smola, A.: Learning with kernels: Support vector machines, regularization, optimization, and beyond. The MIT Press (2002)

    Google Scholar 

  18. Vaillant, M., Glaunès, J.: Surface Matching via Currents. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 381–392. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Xiang, Y., Gubian, S., Suomela, B., Hoeng, J.: Generalized simulated annealing for efficient global optimization: the GenSA package for R. The R Journal (2012) (forthcoming)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Folgoc, L., Delingette, H., Criminisi, A., Ayache, N. (2013). Current-Based 4D Shape Analysis for the Mechanical Personalization of Heart Models. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36620-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36619-2

  • Online ISBN: 978-3-642-36620-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics