Abstract
We investigate a kinetic version of point-set embeddability. Given a plane graph G(V,E) where |V| = n, and a set P of n moving points where the trajectory of each point is an algebraic function of constant maximum degree s, we maintain a point-set embedding of G on P with at most three bends per edge during the motion. This requires reassigning the mapping of vertices to points from time to time. Our kinetic algorithm uses linear size, O(nlogn) preprocessing time, and processes O(n 2 β 2s + 2(n)logn) events, each in O(log2 n) time. Here, β s (n) = λ s (n)/ n is an extremely slow-growing function and λ s (n) is the maximum length of Davenport-Schinzel sequences of order s on n symbols.
Partially supported by NSERC and a University of Victoria Graduate Fellowship.
Chapter PDF
Similar content being viewed by others
References
Abam, M.A., Rahmati, Z., Zarei, A.: Kinetic Pie Delaunay Graph and Its Applications. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 48–58. Springer, Heidelberg (2012)
Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic minimum spanning trees. In: FOCS, pp. 596–605. IEEE Computer Society (1998)
Agarwal, P.K., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for closest pair and all nearest neighbors. ACM Trans. Algorithms 5, 4:1–4:37 (2008)
Basch, J.: Kinetic data structures. PhD Thesis, Stanford University (1999)
Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1997, pp. 747–756. Society for Industrial and Applied Mathematics (1997)
Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs. In: Proceedings of the 28th Symposuim on Computational Geometry, SoCG 2012, pp. 41–50. ACM, New York (2012)
Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303–312 (2002)
Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Algorithms Appl. 1 (1997)
Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006)
Chen, C.: Any maximal planar graph with only one separating triangle is hamiltonian. J. Comb. Optim. 7(1), 79–86 (2003)
Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. J. Algorithms 10(2), 187–211 (1989)
Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)
Durocher, S., Mondal, D.: On the Hardness of Point-Set Embeddability. In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer, Heidelberg (2012)
Giacomo, E.D., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Computational Geometry 30(1), 1–23 (2005)
Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. American Mathematical Monthly 98, 165–166 (1991)
Guibas, L.J., Mitchell, J.S.B.: Voronoi Diagrams of Moving Points in the Plane. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 113–125. Springer, Heidelberg (1992)
Helden, G.: Each maximal planar graph with exactly two separating triangles is hamiltonian. Discrete Applied Mathematics 155(14), 1833–1836 (2007)
Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding problem into points in the plane. Discrete & Computational Geometry 11, 51–63 (1994)
Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)
Nivasch, G.: Improved bounds and new techniques for Davenport–Schinzel sequences and their generalizations. J. ACM 57, 17:1–17:44 (2010)
Rahmati, Z., Zarei, A.: Kinetic Euclidean minimum spanning tree in the plane. Journal of Discrete Algorithms 16, 2–11 (2012)
Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press, New York (2010)
Tutte, W.: A theorem on planar graphs. Trans. Amer. Math. Soc. 82, 99–116 (1956)
Whitney, H.: A theorem on graphs. Ann. Math. 32, 378–390 (1931)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rahmati, Z., Whitesides, S.H., King, V. (2013). Kinetic and Stationary Point-Set Embeddability for Plane Graphs. In: Didimo, W., Patrignani, M. (eds) Graph Drawing. GD 2012. Lecture Notes in Computer Science, vol 7704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36763-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-36763-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36762-5
Online ISBN: 978-3-642-36763-2
eBook Packages: Computer ScienceComputer Science (R0)