Abstract
For two planar graph \(G^{\textcircled1}\) = (\(V^{\textcircled1}\), \(E^{\textcircled1}\)) and \(G^{\textcircled2}\) = (\(V^{\textcircled2}\), \(E^{\textcircled2}\)) sharing a common subgraph G = \(G^{\textcircled1}\) ∩ \(G^{\textcircled2}\) the problem Simultaneous Embedding with Fixed Edges (SEFE) asks whether they admit planar drawings such that the common graph is drawn the same. Previous algorithms only work for cases where G is connected, and hence do not need to handle relative positions of connected components. We consider the problem where G, \(G^{\textcircled1}\) and \(G^{\textcircled2}\) are not necessarily connected.
First, we show that a general instance of SEFE can be reduced in linear time to an equivalent instance where \(V^{\textcircled1}\) = \(V^{\textcircled2}\) and \(G^{\textcircled1}\) and \(G^{\textcircled2}\) are connected. Second, for the case where G consists of disjoint cycles, we introduce the CC-tree which represents all embeddings of G that extend to planar embeddings of \(G^{\textcircled1}\). We show that CC-trees can be computed in linear time, and that their intersection is again a CC-tree. This yields a linear-time algorithm for SEFE if all k input graphs (possibly k > 2) pairwise share the same set of disjoint cycles. These results, including the CC-tree, extend to the case where G consists of arbitrary connected components, each with a fixed embedding. Then the running time is O(n 2).
Partly done within GRADR – EUROGIGA project no. 10-EuroGIGA-OP-003.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 202–221. SIAM (2010)
Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the Simultaneous Embeddability of two Graphs whose Intersection is a Biconnected or a Connected Graph. J. Discr. Alg. 14, 150–172 (2012), http://dx.doi.org/10.1016/j.jda.2011.12.015
Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. CoRR abs/1204.5853 (2012)
Bläsius, T., Rutter, I.: Simultaneous PQ-Ordering with Applications to Constrained Embedding Problems. CoRR abs/1112.0245 (2011)
Di Battista, G., Tamassia, R.: On-Line Maintenance of Triconnected Components with SPQR-Trees. Algorithmica 15(4), 302–318 (1996)
Di Battista, G., Tamassia, R.: On-Line Planarity Testing. SIAM J. Comput. 25(5), 956–997 (1996)
Fowler, J.J., Gutwenger, C., Jünger, M., Mutzel, P., Schulz, M.: An SPQR-Tree Approach to Decide Special Cases of Simultaneous Embedding with Fixed Edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 157–168. Springer, Heidelberg (2009)
Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous Graph Embeddings with Fixed Edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)
Gutwenger, C., Mutzel, P.: A Linear Time Implementation of SPQR-Trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)
Haeupler, B., Jampani, K.R., Lubiw, A.: Testing Simultaneous Planarity When the Common Graph Is 2-Connected. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 410–421. Springer, Heidelberg (2010)
Jünger, M., Schulz, M.: Intersection Graphs in Simultaneous Embedding with Fixed Edges. Journal of Graph Algorithms and Applications 13(2), 205–218 (2009)
Whitney, H.: Congruent Graphs and the Connectivity of Graphs. American Journal of Mathematics 54(1), 150–168 (1932)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bläsius, T., Rutter, I. (2013). Disconnectivity and Relative Positions in Simultaneous Embeddings. In: Didimo, W., Patrignani, M. (eds) Graph Drawing. GD 2012. Lecture Notes in Computer Science, vol 7704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36763-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-36763-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36762-5
Online ISBN: 978-3-642-36763-2
eBook Packages: Computer ScienceComputer Science (R0)