Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Least Square Consensus Clustering: Criteria, Methods, Experiments

  • Conference paper
Advances in Information Retrieval (ECIR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7814))

Included in the following conference series:

Abstract

We develop a consensus clustering framework developed three decades ago in Russia and experimentally demonstrate that our least squares consensus clustering algorithm consistently outperforms several recent consensus clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ghosh, J., Acharya, A.: Cluster ensembles. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2011)

    Google Scholar 

  2. Mirkin, B., Muchnik, I.: Geometrical interpretation of clustering scoring functions. In: Mirkin, B. (ed.) Methods for the Analysis of Multivariate Data in Economics, pp. 3–11. Nauka Publisher, Novosibirsk (1981) (in Russian)

    Google Scholar 

  3. Mirkin, B.: Core concepts in Data Analysis: summarization, correlation, visualization. Springer (2011)

    Google Scholar 

  4. Mirkin, B.: Clustering: A Data Recovery Approach (2012)

    Google Scholar 

  5. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research (2002)

    Google Scholar 

  6. Topchy, A., Jain, A.K., Punch, W.: A mixture model for clustering ensembles. In: Proceedings SIAM International Conference on Data Mining (2004)

    Google Scholar 

  7. Wang, H., Shan, H., Banerjee, A.: Bayesian cluster ensembles. In: Proceedings of the Ninth SIAM International Conference on Data Mining, pp. 211–222 (2009)

    Google Scholar 

  8. Dimitriadou, E., Weingessel, A., Hornik, K.: A Combination Scheme for Fuzzy Clustering. Journal of Pattern Recognition and Artificial Intelligence (2002)

    Google Scholar 

  9. Guenoche, A.: Consensus of partitions: a constructive approach. Adv. Data Analysis and Classification 5, 215–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sevillano Dominguez, X., Socoro Carrie, J.C., Alias Pujol, F.: Fuzzy clusterers combination by positional voting for robust document clustering. Procesamiento Del Lenguaje Natural 43, 245–253

    Google Scholar 

  11. Ayad, H., Kamel, M.: On voting-based consensus of cluster ensembles. Pattern Recognition, 1943–1953 (2010)

    Google Scholar 

  12. Netlab Neural Network software, http://www.ncrg.aston.ac.uk/netlab/index.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mirkin, B.G., Shestakov, A. (2013). Least Square Consensus Clustering: Criteria, Methods, Experiments. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36973-5_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36972-8

  • Online ISBN: 978-3-642-36973-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics