Abstract
We develop a consensus clustering framework developed three decades ago in Russia and experimentally demonstrate that our least squares consensus clustering algorithm consistently outperforms several recent consensus clustering methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ghosh, J., Acharya, A.: Cluster ensembles. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2011)
Mirkin, B., Muchnik, I.: Geometrical interpretation of clustering scoring functions. In: Mirkin, B. (ed.) Methods for the Analysis of Multivariate Data in Economics, pp. 3–11. Nauka Publisher, Novosibirsk (1981) (in Russian)
Mirkin, B.: Core concepts in Data Analysis: summarization, correlation, visualization. Springer (2011)
Mirkin, B.: Clustering: A Data Recovery Approach (2012)
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research (2002)
Topchy, A., Jain, A.K., Punch, W.: A mixture model for clustering ensembles. In: Proceedings SIAM International Conference on Data Mining (2004)
Wang, H., Shan, H., Banerjee, A.: Bayesian cluster ensembles. In: Proceedings of the Ninth SIAM International Conference on Data Mining, pp. 211–222 (2009)
Dimitriadou, E., Weingessel, A., Hornik, K.: A Combination Scheme for Fuzzy Clustering. Journal of Pattern Recognition and Artificial Intelligence (2002)
Guenoche, A.: Consensus of partitions: a constructive approach. Adv. Data Analysis and Classification 5, 215–229 (2011)
Sevillano Dominguez, X., Socoro Carrie, J.C., Alias Pujol, F.: Fuzzy clusterers combination by positional voting for robust document clustering. Procesamiento Del Lenguaje Natural 43, 245–253
Ayad, H., Kamel, M.: On voting-based consensus of cluster ensembles. Pattern Recognition, 1943–1953 (2010)
Netlab Neural Network software, http://www.ncrg.aston.ac.uk/netlab/index.php
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mirkin, B.G., Shestakov, A. (2013). Least Square Consensus Clustering: Criteria, Methods, Experiments. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_79
Download citation
DOI: https://doi.org/10.1007/978-3-642-36973-5_79
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36972-8
Online ISBN: 978-3-642-36973-5
eBook Packages: Computer ScienceComputer Science (R0)