Abstract
Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dodge, S., Weibel, R., Forootan, E.: Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems 33(6), 419–434 (2009)
Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., Silvestri, C.: Trajectory data warehouses: design and implementation issues. Journal of Computing Science and Engineering 1(2), 240–261 (2007)
Millonig, A., Gartner, G.: Identifying motion and interest patterns of shoppers for developing personalised wayfinding tools. Journal of Location Based Services 5(1), 3–21 (2011)
Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Building and Environment 44(3), 437–445 (2009)
Hoogendoorn, S.P., Bovy, P.H.L.: Pedestrian travel behavior modeling. Networks and Spatial Economics 5(2), 193–216 (2005)
Spek, S.: Tracking tourists in historic city centres. In: Information and Communication Technologies in Tourism 2010, pp. 185–196 (2010)
Van Schaick, J.: Timespace Matters-Exploring the Gap Between Knowing About Activity Patterns of People and Knowing How to Design and Plan Urban Areas and Regions (2011)
Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19(6), 639–668 (2005)
Ashbrook, D., Starner, T.: Using gps to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7(5), 275–286 (2003)
Wilson, C.: Activity patterns in space and time: calculating representative hagerstrand trajectories. Transportation 35(4), 485–499 (2008)
Dodge, S., Weibel, R., Lautenschütz, A.K.: Towards a taxonomy of movement patterns. Information Visualization 7(3-4), 240–252 (2008)
Andrienko, G., Andrienko, N.: Spatio-temporal aggregation for visual analysis of movements. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2008, pp. 51–58. IEEE (2008)
Hägerstrand, T.: What about people in regional science? Papers in Regional Science 24(1), 6–21 (1970)
Kraak, M.J.: The space-time cube revisited from a geovisualization perspective. In: Proc. 21st International Cartographic Conference, pp. 1988–1996 (2003)
Kapler, T., Wright, W.: Geotime information visualization. Information Visualization 4(2), 136–146 (2005)
Kraak, M.J.: Geovisualization and time–new opportunities for the space–time cube. In: Geographic Visualization: Concepts, Tools and Applications, pp. 293–306 (2008)
Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations Newsletter 9(2), 38–46 (2007)
Demšar, U., Virrantaus, K.: Space–time density of trajectories: exploring spatio-temporal patterns in movement data. International Journal of Geographical Information Science 24(10), 1527–1542 (2010)
Andrienko, G., Andrienko, N.: Poster: Dynamic time transformation for interpreting clusters of trajectories with space-time cube. In: Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST) 2010, pp. 213–214 (2010)
Horne, J.S., Garton, E.O., Krone, S.M., Lewis, J.S.: Analyzing animal movements using brownian bridges. Ecology 88(9), 2354–2363 (2007)
Slingsby, A., Strachan, J., Vidale, P.L., Dykes, J., Wood, J.: Discovery exhibition: Making hurricane track data accessible. Discovery Exhibition Entry (2010)
Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neighbor search on moving object trajectories. Geoinformatica 11(2), 159–193 (2007)
Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 1135–1138. IEEE (2006)
Buchin, K., Buchin, M., Wenk, C.: Computing the fréchet distance between simple polygons in polynomial time. In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 80–87. ACM (2006)
Sakurai, Y., Yoshikawa, M., Faloutsos, C.: Ftw: fast similarity search under the time warping distance. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 326–337. ACM (2005)
Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684. IEEE (2002)
Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 491–502. ACM (2005)
Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics. Wiley (1997)
Altiparmak, F., Ferhatosmanoglu, H., Erdal, S., Trost, D.C.: Information mining over heterogeneous and high-dimensional time-series data in clinical trials databases. IEEE Transactions on Information Technology in Biomedicine 10(2), 254–263 (2006)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM computing surveys (CSUR) 31(3), 264–323 (1999)
Song, Y., Chen, W.-Y., Bai, H., Lin, C.-J., Chang, E.Y.: Parallel Spectral Clustering. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 374–389. Springer, Heidelberg (2008)
Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel spectral clustering in distributed systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3), 568–586 (2011)
Atev, S., Miller, G., Papanikolopoulos, N.P.: Clustering of vehicle trajectories. IEEE Transactions on Intelligent Transportation Systems 11(3), 647–657 (2010)
Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: Experimental studies and comparative evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 312–319. IEEE (2009)
Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 863–868. ACM (2008)
Lewis, J.R.: Ibm computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. International Journal of Human-Computer Interaction 7(1), 57–78 (1995)
Lewis, J.R.: Psychometric evaluation of an after-scenario questionnaire for computer usability studies: the asq. ACM SIGCHI Bulletin 23(1), 78–81 (1991)
Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343. IEEE (1996)
Van Schaick, J., Van Der Spek, S.C.: Urbanism on Track: Application of Tracking Technologies in Urbanism, vol. 1. Ios Press Inc. (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McArdle, G., Demšar, U., van der Spek, S., McLoone, S. (2013). Interpreting Pedestrian Behaviour by Visualising and Clustering Movement Data. In: Liang, S.H.L., Wang, X., Claramunt, C. (eds) Web and Wireless Geographical Information Systems. W2GIS 2013. Lecture Notes in Computer Science, vol 7820. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37087-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-37087-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37086-1
Online ISBN: 978-3-642-37087-8
eBook Packages: Computer ScienceComputer Science (R0)