Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Multiobjective Proposal Based on the Firefly Algorithm for Inferring Phylogenies

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Abstract

Recently, swarm intelligence algorithms have been applied successfully to a wide variety of optimization problems in Computational Biology. Phylogenetic inference represents one of the key research topics in this area. Throughout the years, controversy among biologists has arisen when dealing with this well-known problem, as different optimality criteria can give as a result discordant genealogical relationships. Current research efforts aim to apply multiobjective optimization techniques in order to infer phylogenies that represent a consensus between different principles. In this work, we apply a multiobjective swarm intelligence approach inspired by the behaviour of fireflies to tackle the phylogenetic inference problem according to two criteria: maximum parsimony and maximum likelihood. Experiments on four real nucleotide data sets show that this novel proposal can achieve promising results in comparison with other approaches from the state-of-the-art in Phylogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Handl, J., Kell, D., Knowles, J.: Multiobjective Optimization in Computational Biology and Bioinformatics. IEEE Transactions on Computational Biology and Bioinformatics 4(2), 289–292 (2006)

    Google Scholar 

  2. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  3. Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Sunderland (2004) ISBN: 0-87893-177-5

    Google Scholar 

  4. Wiens, J.J., Servedio, M.R.: Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods. Systematic Biology 47(2), 228–253 (1998)

    Article  Google Scholar 

  5. Yang, X.-S.: Firefly Algorithm, Stochastic Test Functions and Design Optimisation. Int. J. Bio-Inspired Computation 2(2), 78–84 (2010)

    Article  Google Scholar 

  6. Matsuda, H.: Construction of phylogenetic trees from amino acid sequences using a genetic algorithm. In: Proceedings of Genome Informatics Workshop, pp. 19–28. Universal Academy Press (1995)

    Google Scholar 

  7. Lewis, P.O.: A Genetic Algorithm for Maximum-Likelihood Phylogeny Inference Using Nucleotide Sequence Data. Mol. Biol. Evol. 15(3), 277–283 (1998)

    Article  Google Scholar 

  8. Lemmon, A.R., Milinkovitch, M.C.: The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation. Proceedings of the National Academy of Sciences USA 99(16), 10516–10521 (2002)

    Article  Google Scholar 

  9. Congdon, C.: GAPHYL: An evolutionary algorithms approach for the study of natural evolution. In: Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 1057–1064 (2002)

    Google Scholar 

  10. Goloboff, P.A., Farris, J.S., Nixon, K.C.: TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008)

    Article  Google Scholar 

  11. Stamatakis, A.: RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  12. Cotta, C., Moscato, P.: Inferring Phylogenetic Trees Using Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 720–729. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Poladian, L.: A GA for Maximum Likelihood Phylogenetic Inference using Neighbour-Joining as a Genotype to Phenotype Mapping. In: Genetic and Evolutionary Computation Conference, GECCO 2005, pp. 415–422 (2005)

    Google Scholar 

  14. Poladian, L., Jermiin, L.: Multi-Objective Evolutionary Algorithms and Phylogenetic Inference with Multiple Data Sets. Soft Computing 10(4), 359–368 (2006)

    Article  Google Scholar 

  15. Coelho, G.P., da Silva, A.E.A., Von Zuben, F.J.: Evolving Phylogenetic Trees: A Multiobjective Approach. In: Sagot, M.-F., Walter, M.E.M.T. (eds.) BSB 2007. LNCS (LNBI), vol. 4643, pp. 113–125. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Cancino, W., Delbem, A.C.B.: A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction. In: Korosec, P. (ed.) New Achievements in Evolutionary Computation, pp. 135–156. InTech (2010) ISBN: 978-953-307-053-7

    Google Scholar 

  17. Saitou, N., Nei, M.: The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

    Google Scholar 

  18. Gascuel, O.: BIONJ: An Improved Version of the NJ Algorithm Based on a Simple Model of Sequence Data. Molecular Biology and Evolution 14(7), 685–695 (1997)

    Article  Google Scholar 

  19. Goëffon, A., Richer, J.M., Hao, J.K.: Progressive Tree Neighborhood Applied to the Maximum Parsimony Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5, 136–145 (2008)

    Article  Google Scholar 

  20. Fitch, W.: Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Zoology 20(4), 406–416 (1972)

    Article  Google Scholar 

  21. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  22. Dutheil, J., Gaillard, S., Bazin, E., Glémin, S., Ranwez, V., Galtier, N., Belkhir, K.: Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics 7, 188–193 (2006)

    Article  Google Scholar 

  23. Santander-Jiménez, S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M.: Inferring Phylogenetic Trees Using a Multiobjective Artificial Bee Colony Algorithm. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 144–155. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santander-Jiménez, S., Vega-Rodríguez, M.A. (2013). A Multiobjective Proposal Based on the Firefly Algorithm for Inferring Phylogenies. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics