Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trade-Offs in Social and Behavioral Modeling in Mobile Networks

  • Conference paper
Social Computing, Behavioral-Cultural Modeling and Prediction (SBP 2013)

Abstract

Mobile phones are quickly becoming the primary source for social, behavioral, and environmental sensing and data collection. Today’s smartphones are equipped with increasingly more sensors and accessible data types that enable the collection of literally dozens of signals related to the phone, its user, and its environment. A great deal of research effort in academia and industry is put into mining this raw data for higher level sense-making, such as understanding user context, inferring social networks, learning individual features, and behavior prediction. In this work we investigate the properties of learning and inferences of real world data collected via mobile phones. In particular, we look at the dynamic learning process over time with various sizes of sampling groups and examine the interplay between these two parameters. We validate our model using extensive simulations carried out using the "Friends and Family" dataset which contains rich data signals gathered from the smartphones of 140 adult members of a young-family residential community for over a year and is one of the most comprehensive mobile phone datasets gathered in academia to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems. Personal and Ubiquitous Computing 10, 255–268 (2006)

    Article  Google Scholar 

  2. Aharony, N., et al.: Social fMRI: Investigating and shaping social mechanisms in the real world. In: Pervasive and Mobile Computing (2011)

    Google Scholar 

  3. Lazer, D., et al.: Life in the network: the coming age of computational social science. Science 323, 721 (2009)

    Article  Google Scholar 

  4. Barabasiand, A.-L., Albert, R.: Emergence of scaling in random networks. Science (1999)

    Google Scholar 

  5. Newman, M.E.J.: The structure and function of complex networks.

    Google Scholar 

  6. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature (1998)

    Google Scholar 

  7. Eagle, N., Pentland, A., Lazer, D.: From the Cover: Inferring friendship network structure by using mobile phone data. Proceedings of The National Academy of Sciences 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  8. Gonzalez, M.C., Hidalgo, A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature (2008)

    Google Scholar 

  9. Networks, S.: http://www.sensenetworks.com/

  10. Madan, A., et al.: Social sensing for epidemiological behavior change. In: Ubiquitous Computing/Handheld and Ubiquitous Computing, pp. 291–300 (2010)

    Google Scholar 

  11. Madan, A., Farrahi, K., Gatica-Perez, D.: Pervasive Sensing to Model Political Opinions in Face-to-Face Networks (2011)

    Google Scholar 

  12. Montoliu, R., Gatica-Perez, D.: Discovering human places of interest from multimodal mobile phone data, pp. 1–10 (2010)

    Google Scholar 

  13. Lu, H., et al.: The Jigsaw continuous sensing engine for mobile phone applications, in Conference on Embedded Networked Sensor Systems, pp. 71–84 (2010)

    Google Scholar 

  14. Joki, A., Burke, J.A., Estrin, D.: Campaignr: A Framework for Participatory Data Collection on Mobile Phones (2007)

    Google Scholar 

  15. Abdelzaher, T.F., et al.: Mobiscopes for Human Spaces. IEEE Pervasive Computing 6(2), 20–29 (2007)

    Article  Google Scholar 

  16. Olguín, D.O., et al.: Sensible Organizations: Technology and Methodology for Automatically Measuring Organizational Behavior. IEEE Transactions on Systems, Man, and Cybernetics 39(1), 43–55 (2009)

    Article  Google Scholar 

  17. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  18. Mislove, A., et al.: You are who you know: inferring user profiles in online social networks. In: Web Search and Data Mining, pp. 251–260 (2010)

    Google Scholar 

  19. Rokach, L., et al.: Who is going to win the next Association for the Advancement of Artificial Intelligence Fellowship Award? Evaluating researchers by mining bibliographic data. Journal of the American Society for Information Science and Technology (2011)

    Google Scholar 

  20. Funf. Funf Project, http://funf.media.mit.edu

  21. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring Network Structure, Dynamics, and Function using Network X (2008)

    Google Scholar 

  22. Hall, M., et al.: The WEKA data mining software: an update. Sigkdd Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  23. Blondel, V.D., et al.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 10 (2008)

    Google Scholar 

  24. Xie, J., Szymanski, B.K.: Community Detection Using A Neighborhood Strength Driven Label Propagation Algorithm. Computing Research Repository, abs/1105.3 (2011)

    Google Scholar 

  25. Rouvinen, P.: Diffusion of digital mobile telephony: Are developing countries different? Telecommunications Policy 30(1), 46–63 (2006)

    Article  Google Scholar 

  26. Erickson, G.M.: Tyrannosaur Life Tables: An Example of Nonavian Dinosaur Population Biology. Science 313(5784), 213–217 (2006)

    Article  Google Scholar 

  27. Donofrio, A.: A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Physica D-nonlinear Phenomena 208(3-4), 220–235 (2005)

    Article  MathSciNet  Google Scholar 

  28. Pan, W., Aharony, N., Pentland, A.: Composite Social Network for Predicting Mobile Apps Installation. In: Intelligence, AAAI 2011, San Francisco, CA (2011)

    Google Scholar 

  29. Krishnamurthy, B., Wills, C.E.: On the leakage of personally identifiable information via online social networks. Computer Communication Review 40(1), 7–12 (2009)

    Google Scholar 

  30. Binde, B.E., McRee, R., O‘Connor, T.J.: Assessing Outbound Traffic to Uncover Advanced Persistent Threat, Sans Institute (2011)

    Google Scholar 

  31. Solutionary, White Paper: The Advanced Persistent Threat, APT (2011)

    Google Scholar 

  32. Brunner, M., et al.: Infiltrating Critical Infrastructures with Next-Generation Attacks. Fraunhofer-Institute for Secure Information Technology SIT Munich (2010)

    Google Scholar 

  33. Kalmijn, M.: Intermarriage and Homogamy: Causes, Patterns, Trends. Annual Review of Sociology 24(1), 395–421 (1998)

    Article  Google Scholar 

  34. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology 27(1), 415–444 (2001)

    Article  Google Scholar 

  35. Dey, A.K., et al.: Getting Closer: an Empirical Investigation of the Proximity of Users to Their Smart Phones. In: Proc. of the 13th International Conference on Ubiquitous Computing, pp. 163–172 (2011)

    Google Scholar 

  36. Altshuler, Y., Aharony, N., Elovici, Y., Pentland, A., Cebrian, M.: Stealing Reality: When Criminals Become Data Scientists (or Vice Versa). IEEE Intelligent Systems 26(6), 22–30 (2011)

    Article  Google Scholar 

  37. Altshuler, Y., Fire, M., Aharony, N., Elovici, Y., Pentland, A(S.): How Many Makes a Crowd? On the Evolution of Learning as a Factor of Community Coverage. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.) SBP 2012. LNCS, vol. 7227, pp. 43–52. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  38. Altshuler, Y., Fire, M., Aharony, N., Elovici, Y., Pentland, A.: Incremental Learning with Accuracy Prediction of Social and Individual Properties from Mobile-Phone Data, Arxiv preprint arXiv:1111.4645 (2011)

    Google Scholar 

  39. Altshuler, Y., Wagner, I.A., Bruckstein, A.M.: On Swarm Optimality in Dynamic and Symmetric Environments. Economics 7, 11–18 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altshuler, Y., Fire, M., Aharony, N., Volkovich, Z., Elovici, Y., Pentland, A.(. (2013). Trade-Offs in Social and Behavioral Modeling in Mobile Networks. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol 7812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37210-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37210-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37209-4

  • Online ISBN: 978-3-642-37210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics