Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling the Dynamics of Dengue Fever

  • Conference paper
Social Computing, Behavioral-Cultural Modeling and Prediction (SBP 2013)

Abstract

Dengue is a major international public health concern that impacts one-third of the world’s population. There are four serotypes of the dengue virus (DENV). Infection with one serotype affords life-long immunity to that serotype but only temporary cross immunity (CI) to other serotypes. The risk of lethal complications is elevated upon re-infection, possibly because of the effect of antibody-dependent enhancement (ADE). In this paper we propose a system dynamics model that captures both host and vector populations, latency, and four dengue serotypes. This model allows one to study both CI and ADE. Modeling the Aedes vector adds complexity, but we consider this to be important because combating the mosquito vector may be the most practical intervention in the absence of an effective vaccine. Our results support the need to model the vector population and ADE to explain the observed epidemiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. World Health Organization, http://www.who.int/mediacentre/factsheets/fs117/en/

  2. Nisalak, A., Endy, T.P., Nimmannitya, S., Kalayanarooj, S., Thisayakorn, U., Scott, R.M., Burke, D.S., Hoke, C.H., Innis, B.L., Vaughn, D.W.: Serotype-Specific Dengue Virus Circulation and Dengue Disease in Bangkok, Thailand from 1973 to 1999. Am. J. Trop. Med. Hyg. 68(2), 191–202 (2003)

    Google Scholar 

  3. Cummings, D.A.T., Iamsirithaworn, S., Lessler, J.T., McDermott, A., Prasanthong, R., Nisalak, A., Jarman, R.G., Burke, D.S., Gibbons, R.V.: The Impact of the Demographic Transition on Dengue in Thailand: Insights from a Statistical Analysis and Mathematical Modeling. PLoS Med. 6(9) (2009)

    Google Scholar 

  4. Semenza, J.C., Menne, B.: Climate Change and Infectious Diseases in Europe. Lancet Infect. Dis. 9(6), 365–375 (2009)

    Article  Google Scholar 

  5. Hopp, M., Foley, J.: Global-Scale Relationships between Climate and the Dengue Fever Vector, Aedes Aegypti. Climatic Change 48(2), 441–463 (2001)

    Article  Google Scholar 

  6. Halstead, S.B., O’Rourke, E.J.: Antibody-Enhanced Dengue Virus Infection in Primate Leukocytes. Nature 265, 739 (1977)

    Article  Google Scholar 

  7. CDC website (2012), http://www.cdc.gov/dengue/

  8. Kawaguchi, I., Sasaki, A., Boots, M.: Why Are Dengue Virus Serotypes So Distantly Related? Enhancement and Limiting Serotype Similarity between Dengue Virus Strains. Proc. R. Soc. London [Biol.] 270, 2241–2247 (2003)

    Article  Google Scholar 

  9. Ferguson, N.M., Anderson, R.M., Gupta, S.: The Effect of Antibody-Dependent Enhancement on the Transmission Dynamics and Persistence of Multiple-Strain Pathogens. Proc. Natl. Acad. Sci. U.S.A. 96, 790 (1999)

    Article  Google Scholar 

  10. Recker, M., Blyuss, K.B., Simmons, C.P., Tinh Hien, T., Wills, B., Farrar, J., Gupta, S.: Immunological Serotype Interactions and Their Effect on the Epidemiological Pattern of Dengue. Proc. Biol. Sci. 276(1667), 2541–2548 (2009)

    Article  Google Scholar 

  11. Wearing, H.J., Rohani, P.: Ecological and Immunological Determinants of Dengue Epidemics. Proc. Natl. Acad. Sci. U.S.A. 103, 11802–111807 (2006)

    Article  Google Scholar 

  12. Johansson, M.A., Hombach, J., Cummings, D.A.T.: Models of the Impact of Dengue Vaccines: A Review of Current Research and Potential Approaches. Vaccine 29(35), 5860–5868 (2011)

    Article  Google Scholar 

  13. Cummings, D.A.T., Schwartz, I.B., Billings, L., Shaw, L.B., Burke, D.S.: Dynamic Effects of Antibody-Dependent Enhancement on the Fitness of Viruses. Proc. Natl. Acad. Sci. U.S.A. 102, 15259–15264 (2005)

    Article  Google Scholar 

  14. Nagao, Y., Koelle, K.: Decreases in Dengue Transmission Act to Increase the Incidence of Dengue Hemorrhagic Fever. Proc. Natl. Acad. Sci. U. S. A. 105, 2238–2243 (2008)

    Article  Google Scholar 

  15. Adams, B., Boots, M.: Modelling the Relationship between Antibody-Dependent Enhancement and Immunological Distance with Application to Dengue. J. Theor. Biol. 242, 337–346 (2006)

    Article  MathSciNet  Google Scholar 

  16. Bianco, S., Shaw, L.B., Schwartz, I.B.: Epidemics with Multistrain Interactions: The Interplay between Cross Immunity and Antibody-Dependent Enhancement. Chaos 19(4), 9 (2009)

    Article  Google Scholar 

  17. Halstead, S.B.: Dengue Virus-Mosquito Interactions. Annu. Rev. Entomol. 53, 273–291 (2008)

    Article  Google Scholar 

  18. Billings, L., Schwartz, I.B., Shaw, L.B., McCrary, M., Burke, D.S., Cummings, D.A.T.: Instabilities in Multiserotype Disease Models with Antibody-Dependent Enhancement. J. Theor. Biol. 246, 18–27 (2007)

    Article  MathSciNet  Google Scholar 

  19. Chowell, G., Diaz-Duenas, P., Miller, J.C., Alcazar-Velazco, A., Hyman, J.M., Fenimore, P.W., Castillo-Chavez, C.: Estimation of the Reproduction Number of Dengue Fever from Spatial Epidemic Data. Math. Biosci. 208(2), 571–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koopman, J.S., Prevots, D.R., Marin, M.A.V., Dantes, H.G., Aquino, M.L.Z., Longini, I.M., Amor, J.S.: Determinants and Predictors of Dengue Infection in Mexico. Am. J. Epidemiol. 133(11), 1168–1178 (1991)

    Google Scholar 

  21. Muir, L.E., Kay, B.H.: Aedes Aegypti Survival and Dispersal Estimated by Mark–Release–Recapture in Northern Australia. Am. J. Trop. Med. Hyg. 58(3), 277–282 (1998)

    Google Scholar 

  22. Ferguson, N.M., Donnelly, C.A., Anderson, R.M.: Transmission Dynamics and Epidemiology of Dengue: Insights from Age-Stratified Sero-Prevalence Surveys. Philos. Trans. R. Soc. London [Biol.] 354(1384), 757–768 (1999)

    Article  Google Scholar 

  23. Gubler, D.J., Suharyono, W., Tan, R., Abidin, M., Sie, A.: Viraemia in Patients with Naturally Acquired Dengue Infection. Bull. W. H. O. 59, 623–630 (1981)

    Google Scholar 

  24. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control, 2nd edn. Oxford University Press (1991)

    Google Scholar 

  25. MacDonald, G.: The Epidemiology and Control of Malaria. Oxford University Press (1957)

    Google Scholar 

  26. MacDonald, G.: The Dynamics of Helminth Infections, with Special Reference to Schistosomes. Trans. R. Soc. Trop. Med. Hyg. 59(5), 489–506 (1965)

    Article  Google Scholar 

  27. Kamo, M., Sasaki, A.: The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D: Nonlinear Phenomena 165, 228–241 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, K. et al. (2013). Modeling the Dynamics of Dengue Fever. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol 7812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37210-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37210-0_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37209-4

  • Online ISBN: 978-3-642-37210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics