Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Max-Margin Regularization for Reducing Accidentalness in Chamfer Matching

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

  • 8601 Accesses

Abstract

Standard chamfer matching techniques and their state-ofthe- art extensions are utilizing object contours which only measure the mere sum of location and orientation differences of contour pixels. In our approach we are increasing the specificity of the model contour by learning the relative importance of all model points instead of treating them as independent. However, chamfer matching is still prone to accidental matches in dense clutter. To detect such accidental matches we learn the co-occurrence of generic background contours to further eliminate the number of false detections. Since, clutter only interferes with the foreground model contour we learn where to place the background contours with respect to the foreground object boundary. The co-occurrence of foreground model points and background contours are both integrated into a single max-margin framework. Thus our approach combines the advantages of accurately detecting objects or parts via chamfer matching and the robustness of a max-margin learning. Our results on standard benchmark datasets show that our method significantly outperforms current directional chamfer matching, thus redefining the state-of-the-art in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shotton, J., Blake, A., Cipolla, R.: Multi-scale categorical object recognition using contour fragments. PAMI 30, 1270–1281 (2008)

    Article  Google Scholar 

  2. Liu, M., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching. In: CVPR (2010)

    Google Scholar 

  3. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 4, 115–147 (1987)

    Article  Google Scholar 

  4. Attneave, F.: Some informational aspects of visual perception. Psychological Review 61 (1954)

    Google Scholar 

  5. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: Two new techiques for image matching. In: Int. Joint Conf. Artifical Intelligence, pp. 659–663 (1977)

    Google Scholar 

  6. Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algorithm. PAMI 10, 849–865 (1988)

    Article  Google Scholar 

  7. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: CVPR (2005)

    Google Scholar 

  8. Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. International Journal of Computer Vision 73, 41–49 (2007)

    Article  Google Scholar 

  9. Lin, Z., Davis, L.S., Doermann, D., DeMenthon, D.: Hierarchical part template matching for human detection and segmentation. In: ICCV (2007)

    Google Scholar 

  10. Thayananthan, A., Stenger, B., Torr, P., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: CVPR (2003)

    Google Scholar 

  11. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI (2002)

    Google Scholar 

  12. Ma, T., Yang, X., Latecki, L.J.: Boosting Chamfer Matching by Learning Chamfer Distance Normalization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 450–463. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Kadir, T., Brady, M.: Saliency, scale and image description. IJCV 45 (2001)

    Google Scholar 

  14. Berg, A.C., Malik, J.: Geometric blur for template matching. In: CVPR, pp. 607–614 (2001)

    Google Scholar 

  15. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: 5th Annual ACM Workshop on COLT, pp. 144–152 (1992)

    Google Scholar 

  16. Zhu, L., Chen, Y., Yuille, A.: Learning a hierarchical deformable template for rapid deformable object parsing. PAMI 99 (2009)

    Google Scholar 

  17. Martin, D., Fowlkes, C., Malik, C.: Learning to detect natural image boundaries using local brightness, color and texture cues. PAMI 26, 530–549 (2004)

    Article  Google Scholar 

  18. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  19. Leibe, B., Leaonardis, A., Schiele, B.: Combined object categroization and segmentation with an implicit shape model. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision (2004)

    Google Scholar 

  20. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eigenstetter, A., Yarlagadda, P.K., Ommer, B. (2013). Max-Margin Regularization for Reducing Accidentalness in Chamfer Matching. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics