Abstract
Spatial information in images is considered to be of great importance in the process of object recognition. Recent studies show that human’s classification accuracy might drop dramatically if the spatial information of an image is removed. The original bag-of-words (BoW) model is actually a system simulating such a classification process with incomplete information. To handle the spatial information, spatial pyramid matching (SPM) was proposed, which has become the most widely used scheme in the purpose of spatial modeling. Given an image, SPM divides it into a series of spatial blocks on several levels and concatenates the representations obtained separately within all the blocks. SPM greatly improves the performance since it embeds spatial information into BoW. However, SPM ignores the relationships between the spatial blocks. To address this problems, we propose a new scheme based on a spatial graph, whose nodes correspond to the spatial blocks in SPM, and edges correspond to the relationships between the blocks. Thorough experiments on several popular datasets verify the advantages of the proposed scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV (2004)
Parikh, D.: Recognizing jumbled images: the role of local and global information in image classification. In: ICCV (2011)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007)
Boureau, Y., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR (2010)
Morioka, N., Satoh, S.: Building Compact Local Pairwise Codebook with Joint Feature Space Clustering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 692–705. Springer, Heidelberg (2010)
Ling, H., Soatto, S.: Proximity distribution kernels for geometric context in category recognition. In: ICCV (2007)
Morioka, N., Satoh, S.: Compact correlation coding for visual object categorization. In: ICCV (2011)
Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with Fisher vectors for image categorization. In: ICCV (2011)
Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image Classification Using Super-Vector Coding of Local Image Descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)
Harada, T., Ushiku, Y., Yamashita, Y., Kuniyoshi, Y.: Discriminative spatial pyramid. In: CVPR (2011)
Wang, X., Bai, X., Liu, W., Latecki, L.J.: Feature context for image classification and object detection. In: CVPR (2011)
Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: ICCV (2011)
van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1271–1283 (2010)
Yang, J., Yu, K., Gong, Y., Huang, T.S.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR (2010)
Huang, Y., Huang, K., Yu, Y., Tan, T.: Salient coding for image classification. In: CVPR (2011)
Wu, Z., Huang, Y., Wang, L., Tan, T.: Group encoding of local features in image classification. In: ICPR (2012)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)
Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: a library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)
Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, Z., Huang, Y., Wang, L., Tan, T. (2013). Spatial Graph for Image Classification. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-37331-2_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37330-5
Online ISBN: 978-3-642-37331-2
eBook Packages: Computer ScienceComputer Science (R0)