Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spatial Graph for Image Classification

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

  • 8698 Accesses

Abstract

Spatial information in images is considered to be of great importance in the process of object recognition. Recent studies show that human’s classification accuracy might drop dramatically if the spatial information of an image is removed. The original bag-of-words (BoW) model is actually a system simulating such a classification process with incomplete information. To handle the spatial information, spatial pyramid matching (SPM) was proposed, which has become the most widely used scheme in the purpose of spatial modeling. Given an image, SPM divides it into a series of spatial blocks on several levels and concatenates the representations obtained separately within all the blocks. SPM greatly improves the performance since it embeds spatial information into BoW. However, SPM ignores the relationships between the spatial blocks. To address this problems, we propose a new scheme based on a spatial graph, whose nodes correspond to the spatial blocks in SPM, and edges correspond to the relationships between the blocks. Thorough experiments on several popular datasets verify the advantages of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV (2004)

    Google Scholar 

  2. Parikh, D.: Recognizing jumbled images: the role of local and global information in image classification. In: ICCV (2011)

    Google Scholar 

  3. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007)

    Google Scholar 

  5. Boureau, Y., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR (2010)

    Google Scholar 

  6. Morioka, N., Satoh, S.: Building Compact Local Pairwise Codebook with Joint Feature Space Clustering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 692–705. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Ling, H., Soatto, S.: Proximity distribution kernels for geometric context in category recognition. In: ICCV (2007)

    Google Scholar 

  8. Morioka, N., Satoh, S.: Compact correlation coding for visual object categorization. In: ICCV (2011)

    Google Scholar 

  9. Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with Fisher vectors for image categorization. In: ICCV (2011)

    Google Scholar 

  10. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image Classification Using Super-Vector Coding of Local Image Descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Harada, T., Ushiku, Y., Yamashita, Y., Kuniyoshi, Y.: Discriminative spatial pyramid. In: CVPR (2011)

    Google Scholar 

  12. Wang, X., Bai, X., Liu, W., Latecki, L.J.: Feature context for image classification and object detection. In: CVPR (2011)

    Google Scholar 

  13. Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: ICCV (2011)

    Google Scholar 

  14. van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1271–1283 (2010)

    Article  Google Scholar 

  15. Yang, J., Yu, K., Gong, Y., Huang, T.S.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)

    Google Scholar 

  16. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR (2010)

    Google Scholar 

  17. Huang, Y., Huang, K., Yu, Y., Tan, T.: Salient coding for image classification. In: CVPR (2011)

    Google Scholar 

  18. Wu, Z., Huang, Y., Wang, L., Tan, T.: Group encoding of local features in image classification. In: ICPR (2012)

    Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)

    Article  Google Scholar 

  20. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: a library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  21. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Z., Huang, Y., Wang, L., Tan, T. (2013). Spatial Graph for Image Classification. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics