Abstract
Development processes for building image recognition systems are highly specialized and require expensive expert knowledge. Despite some effort in developing generic image recognition systems, use of computer vision technology is still restricted to experts. We propose a flexible image recognition system (FOREST), which requires no prior knowledge about the recognition task and allows non-expert users to build custom image recognition systems, which solve a specific recognition task defined by the user. It provides a simple-to-use graphical interface which guides users through a simple development process for building a custom recognition system. FOREST integrates a variety of feature descriptors which are combined in a classifier using a boosting approach to provide a flexible and adaptable recognition framework. The evaluation shows, that image recognition systems developed with this framework are capable of achieving high recognition rates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, S., Roth, D.: Learning a Sparse Representation for Object Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 113–127. Springer, Heidelberg (2002)
von Ahn, L., Dabbish, L.: Labeling Images With a Computer Game. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326 (2004)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Belongie, S., Malik, J., Puzicha, J.: Shape Context: A New Descriptor for Shape Matching and Object Recognition. In: NIPS, pp. 831–837 (2000)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual Categorization With Bags of Keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)
Fei-Fei, L., Fergus, R., Perona, P.: Learning Generative Visual Models From Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. In: Workshop on Generative-Model Based Vision (2004)
Freeman, W., Adelson, E.: The Design and Use of Steerable Filters. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 891–906 (1991)
Hegazy, D., Denzler, J.: Boosting Colored Local Features for Generic Object Recognition. Pattern Recognition and Image Analysis 18, 323–327 (2008)
Koskela, M., Laaksonen, J.: Semantic Annotation of Image Groups with Self-organizing Maps. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 518–527. Springer, Heidelberg (2005)
Laaksonen, J., Koskela, M., Laakso, S., Oja, E.: PicSOM - Content-Based Image Retrieval With Self-Organizing Maps. Pattern Recognition Letters 21, 1199–1207 (2000)
Lowe, D.G.: Distinctive Image Features From Scale-Invariant Keypoints. Intl. J. of Computer Vision 60, 91–110 (2004)
Lu, F., Yang, X., Lin, W., Zhang, R., Yu, S.: Image Classification With Multiple Feature Channels. Optical Engineering 50, 057210 (2011)
Manjunath, B., Ohm, J.R., Vasudevan, V., Yamada, A.: Color and Texture Descriptors. IEEE Trans. on Circuits and Systems for Video Technology 11, 703–715 (2001)
Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Trans. on Pattern Analysis & Machine Intelligence 27, 1615–1630 (2005)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A Comparison of Affine Region Detectors. Intl. J. of Computer Vision 65, 43–72 (2005)
Moehrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Improving the Usability of Hierarchical Representations for Interactively Labeling Large Image Data Sets. In: Jacko, J.A. (ed.) HCI International 2011, Part I. LNCS, vol. 6761, pp. 618–627. Springer, Heidelberg (2011)
Moehrmann, J., Heidemann, G.: Efficient Annotation of Image Data Sets for Computer Vision Applications. In: Proceedings of the Intl. Workshop on Visual Interfaces for Ground Truth Collection in Computer Vision Applications, pp. 2:1–2:6 (2012)
Nowak, E., Jurie, F., Triggs, B.: Sampling Strategies for Bag-of-Features Image Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)
Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak Hhypotheses and Boosting for Generic Object Detection and Recognition, pp. 71–84 (2004)
Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic Object Recognition with Boosting. IEEE Trans. on Pattern Analysis and Machine Intelligence 28, 416–431 (2006)
Quinn, A.J., Bederson, B.B.: Human Computation: A Survey and Taxonomy of a Growing Field. In: Proceedings of the Annual Conference on Human Factors in Computing Systems, pp. 1403–1412 (2011)
Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: A Database and Web-Based Tool for Image Annotation. Intl. J. of Computer Vision 77, 157–173 (2008)
Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision 3, 177–280 (2008)
Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 511 (2001)
Yao, B., Yang, X., Zhu, S.-C.: Introduction to a Large-Scale General Purpose Ground Truth Database: Methodology, Annotation Tool and Benchmarks. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 169–183. Springer, Heidelberg (2007)
Zhang, W., Yu, B., Zelinsky, G., Samaras, D.: Object Class Recognition Using Multiple Layer Boosting With Heterogeneous Features. In: Computer Vision and Pattern Recognition, vol. 2, pp. 323–330 (2005)
Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. In: Computer Vision and Pattern Recognition Workshop, p. 13 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moehrmann, J., Heidemann, G. (2013). Efficient Development of User-Defined Image Recognition Systems. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37410-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-37410-4_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37409-8
Online ISBN: 978-3-642-37410-4
eBook Packages: Computer ScienceComputer Science (R0)