Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Classifying Images at Scene Level: Comparing Global and Local Descriptors

  • Conference paper
Adaptive Multimedia Retrieval. Large-Scale Multimedia Retrieval and Evaluation (AMR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7836))

Included in the following conference series:

Abstract

In this paper we compare two state-of-the-art approaches for image classification. The first approach follows the Bag-of-Keypoints method for classifying images based on local image pattern frequency distribution. The second approach computes the gist of an image by computing global image statistics. Both approaches are explained in detail and their performance is compared using a subset of images taken from the ImageClef 2011 PhotoAnnotation task. The images were selected based on the assumption they could be better described using global features. Results show that while Bag-of-Keypoints-like classification performs better even for global concepts the classification accuracy of the global descriptor remains acceptable at a much smaller computational footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM Press, New York (2007)

    Google Scholar 

  2. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C., Maupertuis, D.: Visual Categorization with Bags of Keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  3. Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of GIST descriptors for web-scale image search. In: Proceeding of the ACM International Conference on Image and Video Retrieval, CIVR 2009, p. 1 (2009)

    Google Scholar 

  4. Friedman, A.: Framing pictures: The role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General (1979)

    Google Scholar 

  5. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  6. Leung, T., Malik, J.: Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons. International Journal of Computer Vision 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  7. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  8. Oliva, A.: Gist of the Scene, ch. 41, pp. 251–257. Elsevier, San Diego (2005)

    Google Scholar 

  9. Oliva, A., Torralba, A.: Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  10. Snoek, C.G.M., Worring, M.: Concept-Based Video Retrieval. Foundations and Trends® in Information Retrieval 2(4), 215–322 (2009)

    Article  Google Scholar 

  11. Sonnenburg, S., Rätsch, G., Schäer, C., Schölkopf, B.: Large scale multiple kernel learning. The Journal of Machine Learning Research 7, 1531–1565 (2006)

    MATH  Google Scholar 

  12. van De Sande, K.E., Gevers, T., Snoek, C.G.: A comparison of color features for visual concept classification. In: Proceedings of the 2008 International Conference on Content-Based Image and Video Retrieval, CIVR 2008, p. 141. ACM Press, New York (2008)

    Chapter  Google Scholar 

  13. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  14. Zhang, J., Marszałek, M., Lazebnik, S., Schmid, C.: Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study. International Journal of Computer Vision 73(2), 213–238 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hentschel, C., Gerke, S., Mbanya, E. (2013). Classifying Images at Scene Level: Comparing Global and Local Descriptors. In: Detyniecki, M., García-Serrano, A., Nürnberger, A., Stober, S. (eds) Adaptive Multimedia Retrieval. Large-Scale Multimedia Retrieval and Evaluation. AMR 2011. Lecture Notes in Computer Science, vol 7836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37425-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37425-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37424-1

  • Online ISBN: 978-3-642-37425-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics