Abstract
The finite element method is a numerical simulation technique for solving partial differential equations. Domain decomposition provides a means for parallelizing the expensive simulation with modern computing architecture. Choosing the sub-domains for domain decomposition is a non-trivial task, and in this paper we show how this can be addressed with machine learning. Our method starts with a baseline decomposition, from which we learn tailored sub-domain overlaps from localized neighborhoods. An evaluation of 527 partial differential equations shows that our learned solutions improve the baseline decomposition with high consistency and by a statistically significant margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bjorstad, P., Hvidsten, A.: Iterative Methods for Substructured Elasticity Problems in Structural Analysis. In: Glowinski, R. (ed.) Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 301–312. SIAM, Paris (1987)
Brady, T.F., Yellig, E.: Simulation Data Mining: A New Form of Computer Simulation Output. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of the Thirty-Seventh Winter Simulation Conference, pp. 285–289. ACM, Orlando (2005)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)
Burrows, S., Stein, B., Frochte, J., Wiesner, D., Müller, K.: Simulation Data Mining for Supporting Bridge Design. In: Christen, P., Li, J., Ong, K.L., Stranieri, A., Vamplew, P. (eds.) Proceedings of the Ninth Australasian Data Mining Conference, pp. 163–170. ACM, Ballarat (2011)
Canuto, C.G., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, 1st edn. Scientific computation. Springer, Heidelberg (2007)
Gerold, F., Beucke, K., Seible, F.: Integrative Structural Design. Journal of Computing in Civil Engineering 26(6), 720–726 (2012)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)
Mei, L., Thole, C.A.: Data Analysis for Parallel Car-Crash Simulation Results and Model Optimization. Simulation Modelling Practice and Theory 16(3), 329–337 (2008)
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: LU Decomposition and its Applications. In: Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edn., pp. 34–42. Cambridge University Press, Cambridge (1992)
Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations, 1st edn. Numerical Mathematics and Scientific Computation. Oxford Science Publications, New York City (1999)
Stein, B., Curatolo, D.: Selection of Numerical Methods in Specific Simulation Applications. In: del Pobil, A.P., Mira, J., Ali, M. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 918–927. Springer, Heidelberg (1998)
Toselli, A., Widlund, O.: Domain Decomposition Methods – Algorithms and Theory., 1st edn. Springer Series in Computational Mathematics, vol. 34. Springer, Heidelberg (2004)
Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd edn. Pearson Education, Essex (2007)
Yang, S.-H., Hu, B.-G.: Reformulated Parametric Learning based on Ordinary Differential Equations. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNAI), vol. 4114, pp. 256–267. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Burrows, S., Frochte, J., Völske, M., Torres, A.B.M., Stein, B. (2013). Learning Overlap Optimization for Domain Decomposition Methods. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-37453-1_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37452-4
Online ISBN: 978-3-642-37453-1
eBook Packages: Computer ScienceComputer Science (R0)