Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ClaSP: An Efficient Algorithm for Mining Frequent Closed Sequences

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7818))

Included in the following conference series:

Abstract

In this paper, we propose a new algorithm, called ClaSP for mining frequent closed sequential patterns in temporal transaction data. Our algorithm uses several efficient search space pruning methods together with a vertical database layout. Experiments on both synthetic and real datasets show that ClaSP outperforms currently well known state of the art methods, such as CloSpan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14. IEEE (1995)

    Google Scholar 

  2. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap representation. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 429–435. ACM (2002)

    Google Scholar 

  3. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q.: FreeSpan: frequent pattern-projected sequential pattern mining. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 355–359 (2000)

    Google Scholar 

  4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Itemsets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Transactions on Knowledge and Data Engineering 16(11), 1424–1440 (2004)

    Article  Google Scholar 

  6. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

    Google Scholar 

  7. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate maintenance. IEEE Transactions on Knowledge and Data Engineering 19(8), 1042–1056 (2007)

    Article  MathSciNet  Google Scholar 

  8. Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large datasets. In: Proceedings of SIAM International Conference on Data Mining, pp. 166–177 (2003)

    Google Scholar 

  9. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42(1), 31–60 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomariz, A., Campos, M., Marin, R., Goethals, B. (2013). ClaSP: An Efficient Algorithm for Mining Frequent Closed Sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37453-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37453-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37452-4

  • Online ISBN: 978-3-642-37453-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics