Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Shortest Stochastic Path with Risk Sensitive Evaluation

  • Conference paper
Advances in Artificial Intelligence (MICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7629))

Included in the following conference series:

Abstract

In an environment of uncertainty where decisions must be taken, how to make a decision considering the risk? The shortest stochastic path (SSP) problem models the problem of reaching a goal with the least cost. However under uncertainty, a best decision may: minimize expected cost, minimize variance, minimize worst case, maximize best case, etc. Markov Decision Processes (MDPs) defines optimal decision in the shortest stochastic path problem as the decision that minimizes expected cost, therefore MDPs does not care about the risk. An extension of MDP which has few works in Artificial Intelligence literature is Risk Sensitive MDP. RSMDPs considers the risk and integrates expected cost, variance, worst case and best case in a simple way. We show theoretically the differences and similarities between MDPs and RSMDPs for modeling the SSP problem, in special the relationship between the discount factor γ and risk prone attitudes under the SSP with constant cost. We also exemplify each model in a simple artificial scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. do Lago Pereira, S., de Barros, L.N., Cozman, F.G.: Strong Probabilistic Planning. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 636–652. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Trevizan, F.W., Cozman, F.G., de Barros, L.N.: Planning under risk and knightian uncertainty. In: Veloso, M.M. (ed.) IJCAI, pp. 2023–2028 (2007)

    Google Scholar 

  3. Bertsekas, D.P., Tsitsiklis, J.N.: An Analysis of Stochastic Shortest Path Problems. Mathematics of Operations Research 16(3) (1991)

    Google Scholar 

  4. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. John Wiley & Sons, Inc., New York (1994)

    Book  MATH  Google Scholar 

  5. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)

    Google Scholar 

  6. Braga, J., Starmer, C.: Preference anomalies, preference elicitation and the discovered preference hypothesis. Environmental & Resource Economics 32, 55–89 (2005)

    Article  Google Scholar 

  7. Howard, R.A., Matheson, J.E.: Risk-sensitive markov decision processes. Management Science 18(7), 356–369 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Porteus, E.L.: On the optimality of structured policies in countable stage decision processes. Management Science 22(2), 148–157 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, Y., Koenig, S.: Probabilistic planning with nonlinear utility functions. In: Long, D., Smith, S.F., Borrajo, D., McCluskey, L. (eds.) ICAPS, pp. 410–413. AAAI (2006)

    Google Scholar 

  10. Delage, E., Mannor, S.: Percentile optimization for markov decision processes with parameter uncertainty. Oper. Res. 58(1), 203–213 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mannor, S., Tsitsiklis, J.N.: Mean-variance optimization in markov decision processes. In: Getoor, L., Scheffer, T. (eds.) ICML, pp. 177–184. Omnipress (2011)

    Google Scholar 

  12. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101, 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sladký, K.: Growth rates and average optimality in risk-sensitive markov decision chains. Kybernetika 44(2), 205–226 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Patek, S.D.: On terminating markov decision processes with a risk-averse objective function. Automatica 37(9), 1379–1386 (2001)

    Article  MATH  Google Scholar 

  15. Chung, K.-J., Sobel, M.J.: Discounted mdp’s: distribution functions and exponential utility maximization. SIAM J. Control Optim. 25, 49–62 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ermon, S., Conrad, J., Gomes, C.P., Selman, B.: Risk-sensitive policies for sustainable renewable resource allocation. In: Walsh, T. (ed.) IJCAI, pp. 1942–1948. IJCAI/AAAI (2011)

    Google Scholar 

  17. Cavazos-Cadena, R., Salem-Silva, F.: The discounted method and equivalence of average criteria for risk-sensitive markov decision processes on borel spaces. Applied Mathematics & Optimization 61, 167–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koenig, S., Liu, Y.: The interaction of representations and planning objectives for decision-theoretic planning tasks. J. Exp. Theor. Artif. Intell. 14(4), 303–326 (2002)

    Article  MATH  Google Scholar 

  19. Thiebaux, S., Gretton, C., Slaney, J., Price, D., Kabanza, F.: Decision-theoretic planning with non-markovian rewards. Journal of Artificial Intelligence Research 25, 17–74 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Minami, R., da Silva, V.F. (2013). Shortest Stochastic Path with Risk Sensitive Evaluation. In: Batyrshin, I., González Mendoza, M. (eds) Advances in Artificial Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37807-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37807-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37806-5

  • Online ISBN: 978-3-642-37807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics