Abstract
We introduce the following version of bin packing. The items are of two types (black and white), and in each bin the item types must alternate. We mostly investigate the online scenario. We study the competitiveness of some classical algorithms (First/Best/Worst/Next Fit, Harmonic) — they do not perform very well — and for all online algorithms we also prove the universal lower bound \(1+\frac{1}{2\ln2}\approx1.7213\) which significantly exceeds the known upper bound 1.58889 on classical online bin packing. We also design an online algorithm which is 3-competitive in the absolute sense. A 2.5-approximation algorithm and an APTAS is also given for the offline version.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin packing algorithms. Theoretical Computer Science 440-441, 1–13 (2012)
Benko, A., Dosa, G., Tuza, Z.: Bin Covering with a general profit function: approximability results. Central European Journal of Operations Research (2012) (online published)
Bujtas, C., Dosa, G., Imreh, C., Nagy-György, J., Tuza, Z.: The Graph-Bin Packing Problem. Int. J. Found. Comput. Sci. 22(8), 1971–1993 (2011)
Boyar, J., Dosa, G., Epstein, L.: On the absolute approximation ratio for First Fit and related Results. Discrete Applied Mathematics 160(13-14), 1914–1923 (2012)
Coffman Jr, E., Garey, M., Johnson, D.: Approximation algorithms for bin packing: A survey. In: Approximation Algorithms for NP-hard Problems, pp. 46–93. PWS Publishing Co. (1996)
Dósa, G.: The tight bound of first fit decreasing bin-packing algorithm is FFD(I) ≤ 11/9OPT(I) + 6/9. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 1–11. Springer, Heidelberg (2007)
Dosa, G., Tuza, Z., Ye, D.: Bin packing with “Largest In Bottom” constraint: Tighter bounds and generalizations. Journal of Combinatorial Optimization (to appear), doi: 10.1007/s10878-011-9408-0
Epstein, L.: Personal communication (2011)
Epstein, L.: On online bin packing with LIB constraints. Naval Research Logistics 56(8), 780–786 (2009)
Epstein, L., Levin, A.: On bin packing with conflicts. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 160–173. Springer, Heidelberg (2007)
Epstein, L., Levin, A., van Stee, R.: Multi-dimensional packing with conflicts. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 288–299. Springer, Heidelberg (2007)
Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the theory of NP-Completeness. Freeman, New York (1979)
Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)
Johnson, D.S.: Near-optimal bin-packing algorithms, Doctoral Thesis, MIT, Cambridge (1973)
Jansen, K.: An approximation scheme for bin packing with conflicts. Journal of Combinatorial Optimization 3(4), 363–377 (1999)
Jansen, K., Öhring, S.: Approximation algorithms for time constrained scheduling. Information and Computation 132, 85–108 (1997)
Johnson, D., Demers, A., Ullman, J., Garey, M., Graham, R.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3, 299–325 (1974)
Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-dimensional bin packing problem. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 312–320 (1982)
Lee, C.C., Lee, D.T.: A simple on-line packing algorithm. J. ACM 32, 562–572 (1985)
de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1, 349–355 (1981)
Manyem, P.: Uniform sized bin packing and covering: Online version. In: Misra, J.C. (ed.) Topics in Industrial Mathematics, pp. 447–485. Narosa Publishing House, New Delhi (2003)
Manyem, P., Salt, R., Visser, M.: Approximation lower bounds in online LIB bin packing and covering. Journal of Automata, Languages and Combinatorics 8(4), 663–674 (2003)
McCloskey, B., Shankar, A.: Approaches to bin packing with clique-graph conflicts, Technical Report UCB/CSD-05-1378, EECS Department, University of California, Berkeley (2005)
Seiden, S.: On the online bin packing problem. Journal of the ACM (JACM) 49(5), 640–671 (2002)
van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Information Processing Letters 43(5), 277–284 (1992)
Xia, B.Z., Tan, Z.Y.: Tighter bounds of the First Fit algorithm for the bin-packing problem. Discrete Applied Mathematics 158(15), 1668–1675 (2010)
Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique and Chromatic Number. Theory of Computing 3, 103–128 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balogh, J., Békési, J., Dosa, G., Kellerer, H., Tuza, Z. (2013). Black and White Bin Packing. In: Erlebach, T., Persiano, G. (eds) Approximation and Online Algorithms. WAOA 2012. Lecture Notes in Computer Science, vol 7846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38016-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-38016-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38015-0
Online ISBN: 978-3-642-38016-7
eBook Packages: Computer ScienceComputer Science (R0)