Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

This paper presents an improved as well as a completely new version of a mixed integer linear programming (MILP) formulation for solving the quadratic assignment problem (QAP) to global optimum. Both formulations work especially well on instances where at least one of the matrices is sparse. Modification schemes, to decrease the number of unique elements per row in symmetric instances, are presented as well. The modifications will tighten the presented formulations and considerably shorten the computational times. We solved, for the first time ever to proven optimality, the instance esc32b from the quadratic assignment problem library, QAPLIB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koopmans, T., Beckmann, M.: Assignment problems and location of economic activities. Econometrica 25, 53–76 (1957)

    Article  MathSciNet  Google Scholar 

  2. de Carvalho Jr., S., Rahmann, S.: Microarray layout as a quadratic assignment problem. In: Proceedings of the German Conference on Bioinformatics (GCB). Lecture Notes in Informatic, vol. P-83, pp. 11–20 (2006)

    Google Scholar 

  3. Ben-David, G., Malah, D.: Bounds on the performance of vector-quantizers under channel errors. IEEE Transactions on Information Theory 51(6), 2227–2235 (2005)

    Article  MathSciNet  Google Scholar 

  4. Taillard, E.: Comparison of iterative searches for the quadratic assignment problem. Location Science 3(2), 87–105 (1995)

    Article  Google Scholar 

  5. Loiola, E., Abreu, N., Boaventura-Netto, P., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. European Journal of Operational Research 176(2), 657–690 (2007)

    Article  MathSciNet  Google Scholar 

  6. Burkard, R., Çela, D.E., Karisch, S., Rendl, F.: QAPLIB - a quadratic assignment problem library. Journal of Global Optimization 10, 391–403 (1997)

    Article  MathSciNet  Google Scholar 

  7. Nyberg, A., Westerlund, T.: A new exact discrete linear reformulation of the quadratic assignment problem. European Journal of Operational Research 220(2), 314–319 (2012)

    Article  MathSciNet  Google Scholar 

  8. Eschermann, B., Wunderlich, H.J.: Optimized synthesis of self-testable finite state machines. In: 20th International Symposium on Fault-Tolerant Computing, FTCS-20. Digest of Papers, pp. 390–397 (June 1990)

    Google Scholar 

  9. Fischetti, M., Monaci, M., Salvagnin, D.: Three ideas for the quadratic assignment problem. Operations Research 60, 954–964 (2012)

    Article  MathSciNet  Google Scholar 

  10. Çela, E.: The Quadratic Assignment Problem Theory and Algorithms. Kluwer Academic Publishers (1998)

    Google Scholar 

  11. Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise linear relaxations for pooling problems. Industrial & Engineering Chemistry Research 48(12), 5742–5766 (2009)

    Article  Google Scholar 

  12. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathematical Programming 126, 147–178 (2011), doi:10.1007/s10107-009-0273-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilmore, P.C.: Optimal and suboptimal algorithms for the quadratic assignment problem. Journal of the Society for Industrial and Applied Mathematics 10, 305–313 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nyberg, A., Westerlund, T., Lundell, A. (2013). Improved Discrete Reformulations for the Quadratic Assignment Problem. In: Gomes, C., Sellmann, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2013. Lecture Notes in Computer Science, vol 7874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38171-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38171-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38170-6

  • Online ISBN: 978-3-642-38171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics