Abstract
Statistics published as Linked Data promise efficient extraction, transformation and loading (ETL) into a database for decision support. The predominant way to implement analytical query capabilities in industry are specialised engines that translate OLAP queries to SQL queries on a relational database using a star schema (ROLAP). A more direct approach than ROLAP is to load Statistical Linked Data into an RDF store and to answer OLAP queries using SPARQL. However, we assume that general-purpose triple stores – just as typical relational databases – are no perfect fit for analytical workloads and need to be complemented by OLAP-to-SPARQL engines. To give an empirical argument for the need of such an engine, we first compare the performance of our generated SPARQL and of ROLAP SQL queries. Second, we measure the performance gain of RDF aggregate views that, similar to aggregate tables in ROLAP, materialise parts of the data cube.
Chapter PDF
Similar content being viewed by others
References
Bog, A., Plattner, H., Zeier, A.: A mixed transaction processing and operational reporting benchmark. Information Systems Frontiers 13, 321–335 (2011)
Castillo, R., Leser, U.: Selecting Materialized Views for RDF Data. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010 Workshops. LNCS, vol. 6385, pp. 126–137. Springer, Heidelberg (2010)
Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and Oranges: a Comparison of RDF Benchmarks and Real RDF Datasets. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (2011)
Erling, O.: Directions and Challenges for Semdata. In: Proceedings of Workshop on Semantic Data Management (SemData@VLDB 2010) (2010)
Erling, O.: Virtuoso, a Hybrid RDBMS/Graph Column Store. IEEE Data Eng. Bull. 35, 3–8 (2012)
Etcheverry, L., Vaisman, A.A.: Enhancing OLAP Analysis with Web Cubes. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 469–483. Springer, Heidelberg (2012)
Etcheverry, L., Vaisman, A.A.: QB4OLAP: A Vocabulary for OLAP Cubes on the Semantic Web. In: Proceedings of the Third International Workshop on Consuming Linked Data (2012)
Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View Selection in Semantic Web Databases. PVLDB 5, 97–108 (2011)
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge Discovery 1, 29–53 (1997)
Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Techniques, and Applications. In: Materialized Views. MIT Press (1999)
Harinarayan, V., Rajaraman, A.: Implementing Data Cubes Efficiently. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data (1996)
Kämpgen, B., Harth, A.: Transforming Statistical Linked Data for Use in OLAP Systems. In: Proceedings of the 7th International Conference on Semantic Systems (2011)
Kämpgen, B., Harth, A.: Benchmark Document for No Size Fits All – Running the Star Schema Benchmark with SPARQL and RDF Aggregate Views (2012), http://people.aifb.kit.edu/bka/ssb-benchmark/
Kämpgen, B., O’Riain, S., Harth, A.: Interacting with Statistical Linked Data via OLAP Operations. In: Proceedings of Workshop on Interacting with Linked Data (2012)
Morfonios, K., Konakas, S., Ioannidis, Y., Kotsis, N.: ROLAP Implementations of the Data Cube. ACM Computing Surveys 39 (2007)
O’Neil, P., O’Neil, E., Chen, X.: Star Schema Benchmark - Revision 3. Tech. rep., UMass/Boston (2009), http://www.cs.umb.edu/~poneil/StarSchemaB.pdf
Stonebraker, M., Bear, C., Cetintemel, U., Cherniack, M., Ge, T., Hachem, N., Harizopoulos, S., Lifter, J., Rogers, J., Zdonik, S.: One Size Fits All? – Part 2: Benchmarking Results. In: Proceedings of the Third International Conference on Innovative Data Systems Research (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kämpgen, B., Harth, A. (2013). No Size Fits All – Running the Star Schema Benchmark with SPARQL and RDF Aggregate Views. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds) The Semantic Web: Semantics and Big Data. ESWC 2013. Lecture Notes in Computer Science, vol 7882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38288-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-38288-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38287-1
Online ISBN: 978-3-642-38288-8
eBook Packages: Computer ScienceComputer Science (R0)