Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clinical Time Series Prediction with a Hierarchical Dynamical System

  • Conference paper
Artificial Intelligence in Medicine (AIME 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7885))

Included in the following conference series:

Abstract

In this work we develop and test a novel hierarchical framework for modeling and learning multivariate clinical time series data. Our framework combines two modeling approaches: Linear Dynamical Systems (LDS) and Gaussian Processes (GP), and is capable to model and work with time series of varied length and with irregularly sampled observations. We test our framework on the problem of learning clinical time series data from the complete blood count panel, and show that our framework outperforms alternative time series models in terms of its predictive accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Combi, C., Keravnou-Papailiou, E., Shahar, Y.: Temporal information systems in medicine. Springer Publishing Company (2010) (Incorporated)

    Google Scholar 

  2. Kalman, R.: Mathematical description of linear dynamical systems. Journal of the Society for Industrial & Applied Mathematics, Series A: Control 1, 152–192 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rasmussen, C., Williams, C.: Gaussian processes for machine learning, vol. 1. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  4. Rasmussen, C., Kuss, M., et al.: Gaussian processes in reinforcement learning. Advances in Neural Information Processing Systems 16 (2004)

    Google Scholar 

  5. Deisenroth, M., Huber, M., Hanebeck, U.: Analytic moment-based gaussian process filtering. In: Proceedings of the 26th ICML, pp. 225–232. ACM (2009)

    Google Scholar 

  6. Wang, J., Fleet, D., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Transactions on PAMI 30, 283–298 (2008)

    Article  Google Scholar 

  7. Ko, J., Fox, D.: Learning gp-bayes filters via gaussian process latent variable models. Autonomous Robots 30, 3–23 (2011)

    Article  Google Scholar 

  8. Turner, R., Deisenroth, M., Rasmussen, C.: State-space inference and learning with gaussian processes. In: Proceedings of 13th AISTATS, vol. 9, pp. 868–875 (2010)

    Google Scholar 

  9. Nguyen-tuong, D., Peters, J.: Local gaussian process regression for real time online model learning and control. In: Advances in NIPS (2008)

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1–38 (1977)

    Google Scholar 

  11. Ghahramani, Z., Hinton, G.: Parameter estimation for linear dynamical systems. Technical Report CRG-TR-96-2, University of Totronto (1996)

    Google Scholar 

  12. Hauskrecht, M., Valko, M., Batal, I., Clermont, G., Visweswaran, S., Cooper, G.: Conditional outlier detection for clinical alerting. In: AMIA Annual Symposium Proceedings, vol. 2010, pp. 286–290. AMIA (2010)

    Google Scholar 

  13. Hauskrecht, M., Batal, I., Valko, M., Visweswaran, S., Cooper, G.F., Clermont, G.: Outlier detection for patient monitoring and alerting. Journal of Biomedical Informatics 46(1), 47–55 (2013)

    Article  Google Scholar 

  14. Valko, M., Hauskrecht, M.: Feature importance analysis for patient management decisions. In: 13th International Congress on Medical Informatics, NIH Public Access, pp. 861–865 (2010)

    Google Scholar 

  15. Bibbona, E., Panfilo, G., Tavella, P.: The ornstein–uhlenbeck process as a model of a low pass filtered white noise. Metrologia 45, S117 (2008)

    Article  MathSciNet  Google Scholar 

  16. Gibbs, M., MacKay, D.: Efficient implementation of gaussian processes (1997)

    Google Scholar 

  17. Kim, C.J.: Dynamic linear models with markov-switching. Journal of Econometrics 60, 1–22 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hauskrecht, M., Fraser, H.: Modeling treatment of ischemic heart disease with partially observable markov decision processes. In: Proceedings of the AMIA Symposium, pp. 538–542. American Medical Informatics Association (1998)

    Google Scholar 

  19. Kveton, B., Hauskrecht, M.: Solving factored mdps with exponential-family transition models. In: 16th International Conference on Automated Planning and Scheduling, pp. 114–120 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Z., Hauskrecht, M. (2013). Clinical Time Series Prediction with a Hierarchical Dynamical System. In: Peek, N., Marín Morales, R., Peleg, M. (eds) Artificial Intelligence in Medicine. AIME 2013. Lecture Notes in Computer Science(), vol 7885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38326-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38326-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38325-0

  • Online ISBN: 978-3-642-38326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics