Abstract
Current works solve the problem of rational secret sharing from one or some, but not all, of the following aspects: achieving a more appealing equilibrium concept, avoiding strong communication models and resisting against adversaries. To address one issue above, they need to lower the satisfaction in other issues. In this paper we construct a t-out-of-n rational secret sharing protocol, which achieves an enhanced notion of computational strict Nash equilibrium with respect to adversary structure \(\mathcal{A}\), runs over synchronous (non-simultaneous) broadcast channels and tolerates a malicious adversary who controls a minority of players. To the best of our knowledge, compared with current works tolerating adversaries, we are the first to yield positive results in all the three research aspects above. The feasibility of our protocol is based on the use of publicly verifiable secret sharing. Under the assumptions related to discrete logarithm and ElGamal cryptosystem, computational bounded players have an incentive not to deviate no matter how adversaries behave.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006,, pp. 53–62. ACM, New York (2006)
Altabari, N., Krohmer, A., Molter, H., Tarrach, T.: A rational secret sharing scheme robust against malicious players (2009)
Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret sharing. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 559–576. Springer, Heidelberg (2009)
Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)
Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)
Dov Gordon, S., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)
Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 623–632 (2004)
Kol, G., Naor, M.: Cryptography and game theory: Designing protocols for exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)
Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432 (2008)
Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)
Maleka, S., Shareef, A., Pandu Rangan, C.: Rational secret sharing with repeated games. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 334–346. Springer, Heidelberg (2008)
Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minority and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 36–53. Springer, Heidelberg (2009)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)
Zhang, Y., Tartary, C., Wang, H.: An efficient rational secret sharing scheme based on the Chinese remainder theorem. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 259–275. Springer, Heidelberg (2011)
Zhang, Z., Liu, M.: Unconditionally secure rational secret sharing in standard communication networks. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 355–369. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, Y., Zhou, Z. (2013). An Efficient Rational Secret Sharing Protocol Resisting against Malicious Adversaries over Synchronous Channels. In: Kutyłowski, M., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2012. Lecture Notes in Computer Science, vol 7763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38519-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-38519-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38518-6
Online ISBN: 978-3-642-38519-3
eBook Packages: Computer ScienceComputer Science (R0)