Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Hardness of Code Equivalence over \(\mathbb{F}_q\) and Its Application to Code-Based Cryptography

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7932))

Included in the following conference series:

Abstract

The code equivalence problem is to decide whether two linear codes over \(\mathbb{F}_{q}\) are identical up to a linear isometry of the Hamming space. In this paper, we review the hardness of code equivalence over \(\mathbb{F}_q\) due to some recent negative results and argue on the possible implications in code-based cryptography. In particular, we present an improved version of the three-pass identification scheme of Girault and discuss on a connection between code equivalence and the hidden subgroup problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification scheme with reduced communication. In: 2011 IEEE Information Theory Workshop (ITW), pp. 648–652 (2011)

    Google Scholar 

  2. Assmus, E.F.J., Key, J.D.: Designs and their Codes. Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press (1992), second printing with corrections (1993)

    Google Scholar 

  3. Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.: Code equivalence and group isomorphism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 1395–1408. SIAM (2011)

    Google Scholar 

  4. Barg, S.: Some new NP-complete coding problems. Probl. Peredachi Inf. 30, 23–28 (1994)

    MathSciNet  Google Scholar 

  5. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems (corresp.). IEEE Transactions on Information Theory 24, 384–386 (1978)

    Article  MATH  Google Scholar 

  6. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.: Error-Correcting Linear Codes: Classification by Isometry and Applications. Algorithms and Computation in Mathematics, vol. 18. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Bouyukliev, I.: About the code equivalence. Ser. Coding Theory Cryptol. 3, 126–151 (2007)

    Article  MathSciNet  Google Scholar 

  8. Cayrel, P.L., Gaborit, P., Girault, M.: Identity-based identification and signature schemes using correcting codes. In: Augot, D., Sendrier, N., Tillich, J.P. (eds.) Workshop on Coding and Cryptography - WCC 2007, pp. 69–78. INRIA (2007)

    Google Scholar 

  9. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Dinh, H., Moore, C., Russell, A.: McEliece and niederreiter cryptosystems that resist quantum fourier sampling attacks. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 761–779. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Dinh, H., Moore, C., Russell, A.: Quantum fourier sampling, code equivalence, and the quantum security of the mceliece and sidelnikov cryptosystems. Tech. rep. (2011), also available as arXiv:1111.4382v1

    Google Scholar 

  13. Feulner, T.: The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Adv. Math. Commun. 3, 363–383 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fripertinger, H.: Enumeration of linear codes by applying methods from algebraic combinatorics. Grazer Math. Ber. 328, 31–42 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Fripertinger, H.: Enumeration of the semilinear isometry classes of linear codes. Bayrether Mathematische Schriften 74, 100–122 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Fripertinger, H., Kerber, A.: Isometry classes of indecomposable linear codes. In: Giusti, M., Cohen, G., Mora, T. (eds.) AAECC 1995. LNCS, vol. 948, pp. 194–204. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  17. Girault, M.: A (non-practical) three-pass identification protocol using coding theory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 265–272. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  18. Grochow, J.A.: Matrix lie algebra isomorphism. Tech. Rep. TR11-168, Electronic Colloquium on Computational Complexity (2011), also available as arXiv:1112.2012, IEEE Conference on Computational Complexity (2012) (to appear)

    Google Scholar 

  19. Harari, S.: A new authentication algorithm. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 91–105. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  20. Human, W.C.: Codes and groups. In: Pless, V., Human, W.C. (eds.) Handbook of Coding Theory, pp. 1345–1440. Elsevier, North-Holland (1998)

    Google Scholar 

  21. Kaski, P., Östergård, P.R.J.: Classification Algorithms for Codes and Designs. Algorithms and Computation in Mathematics, vol. 15. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  22. MacWilliams, F.J.: Error-correcting codes for multiple-level transmission. Bell. Syst. Tech. J. 40, 281–308 (1961)

    MathSciNet  Google Scholar 

  23. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Tech. Rep. DSN Progress Report 42-44, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA (1978)

    Google Scholar 

  24. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer (2009)

    Google Scholar 

  25. Peters, C.: Information-set decoding for linear codes over \(\mathbb{F}_q\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inform. Theory 43, 1602–1604 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sendrier, N.: On the dimension of the hull. SIAM J. Discrete Math. 10(2), 282–293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sendrier, N.: Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Trans. Inform. Theory 26, 1193–1203 (2000)

    Article  MathSciNet  Google Scholar 

  29. Sendrier, N., Simos, D.E.: How easy is code equivalence over \(\mathbb{F}_q\)? In: WCC 2013: Proceedings of the 8th International Workshop on Coding and Cryptography (preprint 2012) (to appear, 2013), https://www.rocq.inria.fr/secret/PUBLICATIONS/codeq3.pdf

  30. Skersys, G.: Calcul du groupe d’automorphisme des codes. Détermination de l’ equivalence des codes. Thèse de doctorat, Université de Limoges (October 1999)

    Google Scholar 

  31. Stern, J.: An alternative to the fiat-shamir protocol. In: Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 173–180. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  32. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  33. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  34. Vertigan, D.: Bicycle dimension and special points of the Tutte polynomial. Journal of Combinatorial Theory, Series B 74, 378–396 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sendrier, N., Simos, D.E. (2013). The Hardness of Code Equivalence over \(\mathbb{F}_q\) and Its Application to Code-Based Cryptography. In: Gaborit, P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38616-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38616-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38615-2

  • Online ISBN: 978-3-642-38616-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics