Abstract
In this paper, we first prove an explicit formula which bounds the degree of regularity of the family of HFEv (“HFE with vinegar”) and HFEv- (“HFE with vinegar and minus”) multivariate public key cryptosystems over a finite field of size q. The degree of regularity of the polynomial system derived from an HFEv- system is less than or equal to
where the parameters v, D, q, and a are parameters of the cryptosystem denoting respectively the number of vinegar variables, the degree of the HFE polynomial, the base field size, and the number of removed equations, and r is the “rank” paramter which in the general case is determined by D and q as \(r=\lfloor \log_q(D-1)\rfloor +1\). In particular, setting a = 0 gives us the case of HFEv where the degree of regularity is bound by
This formula provides the first solid theoretical estimate of the complexity of algebraic cryptanalysis of the HFEv- signature scheme, and as a corollary bounds on the complexity of a direct attack against the QUARTZ digital signature scheme. Based on some experimental evidence, we evaluate the complexity of solving QUARTZ directly using F4/F5 or similar Gröbner methods to be around 292.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proceedings of the International Conference on Polynomial System Solving, pp. 71–74 (2004); Previously INRIA report RR-5049
Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.) MEGA 2005 Sardinia, Italy (2005)
Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011)
Billet, O., Macario-Rat, G.: Cryptanalysis of the square cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 451–468. Springer, Heidelberg (2009)
Bouillaguet, C., Chen, H.-C., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir, A., Yang, B.-Y.: Fast exhaustive search for polynomial systems in \({\mathbb{F}_2}\). In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer, Heidelberg (2010)
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck (1965)
Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.-S.: Square, a new multivariate encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009)
Courtois, N., Goubin, L., Meier, W., Tacier, J.-D.: Solving underdefined systems of multivariate quadratic equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)
Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)
Courtois, N.T., Daum, M., Felke, P.: On the security of HFE, HFEv- and Quartz. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 337–350. Springer, Heidelberg (2002)
Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000), http://www.minrank.org/xlfull.pdf
Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg (2004)
Ding, J., Buchmann, J., Mohamed, M.S.E., Mohamed, W.S.A.E., Weinmann, R.-P.: Mutant XL. Talk at the First International Conference on Symbolic Computation and Cryptography (SCC 2008), Beijing (2008)
Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway [31], pp. 724–742
Ding, J., Kleinjung, T.: Degree of regularity for HFE−. Cryptology ePrint Archive, Report 2011/570 (2011), http://eprint.iacr.org/
Ding, J., Yang, B.-Y.: Multivariate public key cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography, 1st edn., pp. 193–241. Springer, Berlin (2008) ISBN 3-540-88701-6
Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010)
Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with internal perturbation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265. Springer, Heidelberg (2007)
Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)
Fischlin, M., Buchmann, J., Manulis, M. (eds.): PKC 2012. LNCS, vol. 7293. Springer, Heidelberg (2012)
Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)
Huang, Y.-J., Liu, F.-H., Yang, B.-Y.: Public-key cryptography from new multivariate quadratic assumptions. In: Fischlin et al. [20], pp. 190–205
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999), http://www.minrank.org/hfesubreg.ps
Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)
Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Application, vol. 20. Cambridge University Press (2003)
Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)
Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996), http://www.minrank.org/hfe.pdf
Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–288. Springer, Heidelberg (2001)
Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Information & Computation 3(4), 317–344 (2003)
Rogaway, P. (ed.): Advances in Cryptology – CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)
Sakumoto, K.: Public-key identification schemes based on multivariate cubic polynomials. In: Fischlin et al. [20], pp. 172–189
Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate quadratic polynomials. In: Rogaway [31], pp. 706–723
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)
Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic equations revisited. In: Fischlin et al. [20], pp. 156–171.
Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg (2005)
Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ding, J., Yang, BY. (2013). Degree of Regularity for HFEv and HFEv-. In: Gaborit, P. (eds) Post-Quantum Cryptography. PQCrypto 2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38616-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-38616-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38615-2
Online ISBN: 978-3-642-38616-9
eBook Packages: Computer ScienceComputer Science (R0)