Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Probabilistic Template Model for Finding Macromolecules in MET Volume Images

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Included in the following conference series:

Abstract

We introduce and investigate probabilistic templates with particular focus on the application of protein identification in electron tomography volumes. We suggest to create templates with a weighted averaging operation of several object instances after alignment of an identified subpart. The subpart to be aligned should, ideally, correspond to a rigid and easily identifiable part of the object. The proposed templates enables common rigid template matching methods to also find different shape variations without increasing time complexity in the actual search procedure, since a static template is still used. We present general ideas on how to perform the object instance alignment and look specifically at how to do it for the antibody macromolecule IgG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wriggers, W., Chacon, P.: Modeling tricks and fitting techniques for multi-resolution structures. Structure 9, 779–788 (2001)

    Article  Google Scholar 

  2. Ding, L., Goshtasby, A., Satter, M.: Volume image registration by template matching. Image and Vision Computing 19, 821–832 (2001)

    Article  Google Scholar 

  3. Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice. Wiley Publishing (2009)

    Google Scholar 

  4. Sintorn, I.M., Homman-Loudiyi, M., Söderberg-Nauclér, C., Borgefors, G.: A refined circular template matching method for classification of human cytomegalovirus capsids in tem images. Computer Methods and Programs in Biomedicine 76(2), 95–102 (2004)

    Article  Google Scholar 

  5. Wriggers, W., Milligan, R.A., McCammon, J.A.: Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. Journal of Structural Biology 125(2-3), 185–195 (1999)

    Article  Google Scholar 

  6. Wriggers, W., Birmanns, S.: Using situs for flexible and rigid-body fitting of multiresolution single-molecule data. Journal of Structural Biology 133(2-3), 193–202 (2001)

    Article  Google Scholar 

  7. Tama, F., Miyashita, O., Brooks III, C.L.: Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. Journal of Molecular Biology 337(4), 985–999 (2004)

    Article  Google Scholar 

  8. Trabuco, L.G., Villa, E., Mitra, K., Frank, J., Schulten, K.: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5), 673–683 (2008)

    Article  Google Scholar 

  9. Förster, F., Hegerl, R.: Structure determination in situ by averaging of tomograms. In: McIntosh, J.R. (ed.) Cellular Electron Microscopy. Methods in Cell Biology, vol. 79, pp. 741–767. Academic Press (2007)

    Google Scholar 

  10. Svensson, L., Nysjö, J., Brun, A., Nyström, I., Sintorn, I.M.: Rigid template registration in met images using cuda. In: VISAPP (1), 418–422 (2012)

    Google Scholar 

  11. Sandin, S., Öfverstedt, L.G., Wikström, A.C., Wrange, O., Skoglund, U.: Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 12, 409–415 (2004)

    Article  Google Scholar 

  12. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Computational Geometry 24(2), 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schönemann, P.: A generalized solution of the orthogonal procrustes problem. Psychometrika 31, 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pittet, J.J., Henn, C., Engel, A., Heymann, J.B.: Visualizing 3D data obtained from microscopy on the internet. Journal of Structural Biology 125, 123–132 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Svensson, L., Sintorn, IM. (2013). A Probabilistic Template Model for Finding Macromolecules in MET Volume Images. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_101

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_101

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics