Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning to Detect Stent Struts in Intravascular Ultrasound

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Included in the following conference series:

  • 1928 Accesses

Abstract

In this paper we tackle the automatic detection of struts elements (metallic braces of a stent device) in Intravascular Ultrasound (IVUS) sequences. The proposed method is based on context-aware classification of IVUS images, where we use Multi-Class Multi-Scale Stacked Sequential Learning (M2SSL). Additionally, we introduce a novel technique to reduce the amount of required contextual features. The comparison with binary and multi-class learning is also performed, using a dataset of IVUS images with struts manually annotated by an expert. The best performing configuration reaches a F-measure F = 63.97% .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yoon, H.J., Hur, S.H.: Optimization of stent deployment by intravascular ultrasound. Korean J. Intern. Med. 27(1), 30–38 (2012)

    Article  MathSciNet  Google Scholar 

  2. Canero, C., Pujol, O., Radeva, P., Toledo, R., Saludes, J., Gil, D., Villanueva, J., Mauri, J., Garcia, B., Gomez, J.: Optimal stent implantation: three-dimensional evaluation of the mutual position of stent and vessel via intracoronary echocardiography. In: Computers in Cardiology, pp. 261–264 (1999)

    Google Scholar 

  3. Dijkstra, J., Koning, G., Tuinenburg, J., Reiber, P.O.J.: Automatic border detection in intravascular iltrasound images for quantitative measurements of the vessel, lumen and stent parameters. Computers in Cardiology 28, 25–28 (2001)

    Google Scholar 

  4. Dijkstra, J., Koning, G.: P.V., J.T., Reiber, O.J.: Automatic stent border detection in intravascular ultrasound images. In: CARS, pp. 1111–1116 (2003)

    Google Scholar 

  5. Rotger, D., Radeva, P., Bruining, N.: Automatic detection of bioabsorbable coronary stents in ivus images using a cascade of classifiers. IEEE Transactions on Information Technology in Biomedicine 14(2), 535–537 (2010)

    Article  Google Scholar 

  6. Hua, R., Pujol, O., Ciompi, F., Balocco, S., Alberti, M., Mauri, F., Radeva, P.: Stent strut detection by classifying a wide set of ivus features. In: MICCAI Workshop on Computer Assisted Stenting (2012)

    Google Scholar 

  7. Ciompi, F., Pujol, O., Gatta, C., Alberti, M., Balocco, S., Carrillo, X., Mauri-Ferre, J., Radeva, P.: Holimab: A holistic approach for media-adventitia border detection in intravascular ultrasounds. Medical Image Analysis 16, 1085–1100 (2012)

    Article  Google Scholar 

  8. Balocco, S., Gatta, C., Ciompi, F., Pujol, O., Carrillo, X., Mauri, J., Radeva, P.: Combining growcut and temporal correlation for ivus lumen segmentation. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 556–563. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gatta, C., Balocco, S., Ciompi, F., Hemetsberger, R., Leor, O.R., Radeva, P.: Real-time gating of ivus sequences based on motion blur analysis: Method and quantitative validation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 59–67. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Gatta, C., Puertas, E., Pujol, O.: Multi-scale stacked sequential learning. Pattern Recognition 44(10-11), 2414–2426 (2011)

    Article  Google Scholar 

  11. Puertas, E., Escalera, S., Pujol, O.: Multi-class multi-scale stacked sequential learning. In: Sansone, C., Kittler, J., Roli, F. (eds.) MCS 2011. LNCS, vol. 6713, pp. 197–206. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Schapire, R.: The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA, USA (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciompi, F. et al. (2013). Learning to Detect Stent Struts in Intravascular Ultrasound. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics