Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Robust Machine Learning Approach for Signal Separation and Classification

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Included in the following conference series:

Abstract

In this paper a data-driven approach for signal separation over the digital domain is discussed. The proposed approach solves the problem as a classification task and it is widely experimented over electromagnetic signals in open scenarios. Results show that high levels of accuracy are reachable through a relatively easy learning method over simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ata’a, A.W., Abdullah, S.N.: Deinterleaving of radar signals and PRF identification algorithms. IET Radar, Sonar & Navigation 1(5), 340–347 (2007)

    Article  Google Scholar 

  2. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)

    Article  Google Scholar 

  3. Granger, E., Savaria, Y., Lavoie, P., Cantin, M.A.: A comparison of self-organizing neural networks for fast clustering of radar pulses. Signal Processing 64(3), 249–269 (1998)

    Article  MATH  Google Scholar 

  4. Joachims, T.: Making large-Scale SVM Learning Practical. Advances in Kernel Methods. Support Vector Learning. MIT-Press (1998)

    Google Scholar 

  5. Liu, J., Lee, J.P.Y., Li, L., Luo, Z.Q., Wong, K.M.: Online clustering algorithms for radar emitter classification. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1185–1196 (2005)

    Article  Google Scholar 

  6. Mardia, H.K.: New techniques for the deinterleaving of repetitive sequences. IEE Proceedings F: Radar and Signal Processing 136, 149–154 (1989)

    Article  Google Scholar 

  7. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing 42(8) (August 2004)

    Google Scholar 

  8. Milojevic, D.J., Popovic, B.M.: Improved algorithm for the deinterleaving of radar pulses. IEE Proceedings F Radar and Signal Processing (1992)

    Google Scholar 

  9. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)

    Google Scholar 

  10. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filice, S., Croce, D., Basili, R. (2013). A Robust Machine Learning Approach for Signal Separation and Classification. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics