Abstract
In this paper a data-driven approach for signal separation over the digital domain is discussed. The proposed approach solves the problem as a classification task and it is widely experimented over electromagnetic signals in open scenarios. Results show that high levels of accuracy are reachable through a relatively easy learning method over simulated data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ata’a, A.W., Abdullah, S.N.: Deinterleaving of radar signals and PRF identification algorithms. IET Radar, Sonar & Navigation 1(5), 340–347 (2007)
Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)
Granger, E., Savaria, Y., Lavoie, P., Cantin, M.A.: A comparison of self-organizing neural networks for fast clustering of radar pulses. Signal Processing 64(3), 249–269 (1998)
Joachims, T.: Making large-Scale SVM Learning Practical. Advances in Kernel Methods. Support Vector Learning. MIT-Press (1998)
Liu, J., Lee, J.P.Y., Li, L., Luo, Z.Q., Wong, K.M.: Online clustering algorithms for radar emitter classification. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1185–1196 (2005)
Mardia, H.K.: New techniques for the deinterleaving of repetitive sequences. IEE Proceedings F: Radar and Signal Processing 136, 149–154 (1989)
Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing 42(8) (August 2004)
Milojevic, D.J., Popovic, B.M.: Improved algorithm for the deinterleaving of radar pulses. IEE Proceedings F Radar and Signal Processing (1992)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)
Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Filice, S., Croce, D., Basili, R. (2013). A Robust Machine Learning Approach for Signal Separation and Classification. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_89
Download citation
DOI: https://doi.org/10.1007/978-3-642-38628-2_89
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38627-5
Online ISBN: 978-3-642-38628-2
eBook Packages: Computer ScienceComputer Science (R0)