Abstract
Fair exchange protocol aims to allow two parties to exchange digital items in a fair manner. It is well-known that fairness can only be achieved with the help of a trusted third party, usually referred to as arbitrator. A fair exchange protocol is optimistic if the arbitrator is not involved in the normal execution of the fair exchange process. That is, its presence is necessary only when one of the exchanging parties is dishonest. Traditionally, the items being exchanged are digital signatures. In this paper, we consider the items to be threshold signatures. Specifically, the signatures are created by a subset of legitimate signers instead of a single signer. We define a security model for this new notion, and provide an concrete instantiation. Our instantiation can be proven secure in the random oracle model. Our definition covers the case when the item being exchanged is a secret key of an identity-based encryption where the master secret key is split amongst a set of authorities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: ACM Conference on Computer and Communications Security, pp. 7–17 (1997)
Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)
Avoine, G., Vaudenay, S.: Optimistic fair exchange based on publicly verifiable secret sharing. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 74–85. Springer, Heidelberg (2004)
Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)
Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)
Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer, Heidelberg (2007)
Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from podc 2003. In: DRM 2003, pp. 47–54 (2003)
Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-free optimistic contract signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)
Huang, Q., Wong, D.S., Susilo, W.: Group-oriented fair exchange of signatures. Inf. Sci. 181(16), 3267–3283 (2011)
Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer, Heidelberg (2008)
Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient optimistic fair exchange secure in the multi-user setting and chosen-key model without random oracles. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg (2008)
Huang, X., Mu, Y., Susilo, W., Wu, W., Zhou, J., Deng, R.H.: Preserving transparency and accountability in optimistic fair exchange of digital signatures. IEEE Transactions on Information Forensics and Security 6(2), 498–512 (2011)
Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryptography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 436–453. Springer, Heidelberg (2010)
Küpçü, A., Lysyanskaya, A.: Optimistic fair exchange with multiple arbiters. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 488–507. Springer, Heidelberg (2010)
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)
Markowitch, O., Kremer, S.: An optimistic non-repudiation protocol with transparent trusted third party. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 363–378. Springer, Heidelberg (2001)
Qu, L., Wang, G., Mu, Y.: Optimistic fair exchange of ring signatures. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 227–242. Springer, Heidelberg (2012)
Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a construction without random oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Zhang, J., Mao, J.: A novel verifiably encrypted signature scheme without random oracle. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 65–78. Springer, Heidelberg (2007)
Zhu, H., Bao, F.: Stand-alone and setup-free verifiably committed signatures. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 159–173. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Y., Au, M.H., Liu, J.K., Yuen, T.H., Susilo, W. (2013). Threshold-Oriented Optimistic Fair Exchange. In: Lopez, J., Huang, X., Sandhu, R. (eds) Network and System Security. NSS 2013. Lecture Notes in Computer Science, vol 7873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38631-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-38631-2_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38630-5
Online ISBN: 978-3-642-38631-2
eBook Packages: Computer ScienceComputer Science (R0)