Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Filtering Trolling Comments through Collective Classification

  • Conference paper
Network and System Security (NSS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7873))

Included in the following conference series:

  • 3668 Accesses

Abstract

Nowadays, users are increasing their participation in the Internet and, particularly, in social news websites. In these webs, users can comment diverse stories or other users’ comments. In this paper we propose a new method based for filtering trolling comments. To this end, we extract several features from the text of the comments, specifically, we use a combination of statistical, syntactic and opinion features. These features are used to train several machine learning techniques. Since the number of comments is very high and the process of labelling tedious, we use a collective learning approach to reduce the labelling efforts of classic supervised approaches. We validate our approach with data from ‘Menéame’, a popular Spanish social news site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O’Reilly, T.: What is web 2.0: Design patterns and business models for the next generation of software. Communications & Strategies (1), 17 (2007)

    Google Scholar 

  2. Lerman, K.: User participation in social media: Digg study. In: Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops, pp. 255–258. IEEE Computer Society (2007)

    Google Scholar 

  3. Santos, I., de-la Peña-Sordo, J., Pastor-López, I., Galán-García, P., Bringas, P.: Automatic categorisation of comments in social news websites. Expert Systems with Applications (2012)

    Google Scholar 

  4. Neville, J., Jensen, D.: Collective classification with relational dependency networks. In: Proceedings of the Second International Workshop on Multi-Relational Data Mining, pp. 77–91 (2003)

    Google Scholar 

  5. Santos, I., Laorden, C., Bringas, P.: Collective classification for unknown malware detection. In: Proceedings of the 6th International Conference on Security and Cryptography (SECRYPT), pp. 251–256 (2011)

    Google Scholar 

  6. Laorden, C., Sanz, B., Santos, I., Galán-García, P., Bringas, P.G.: Collective classification for spam filtering. In: Herrero, Á., Corchado, E. (eds.) CISIS 2011. LNCS, vol. 6694, pp. 1–8. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

    Google Scholar 

  8. Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  9. Tata, S., Patel, J.M.: Estimating the Selectivity of tf-idf based Cosine Similarity Predicates. ACM SIGMOD Record 36(2), 75–80 (2007)

    Article  Google Scholar 

  10. Kent, J.: Information gain and a general measure of correlation. Biometrika 70(1), 163–173 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16(3), 321–357 (2002)

    MATH  Google Scholar 

  12. Garner, S.: Weka: The Waikato environment for knowledge analysis. In: Proceedings of the 1995 New Zealand Computer Science Research Students Conference, pp. 57–64 (1995)

    Google Scholar 

  13. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de-la-Peña-Sordo, J., Santos, I., Pastor-López, I., Bringas, P.G. (2013). Filtering Trolling Comments through Collective Classification. In: Lopez, J., Huang, X., Sandhu, R. (eds) Network and System Security. NSS 2013. Lecture Notes in Computer Science, vol 7873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38631-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38631-2_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38630-5

  • Online ISBN: 978-3-642-38631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics