Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High Performance CPU Kernels for Multiphase Compressible Flows

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2012 (VECPAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7851))

  • 2047 Accesses

Abstract

We develop efficient CPU kernels for multiphase compressible flows and evaluate different optimization strategies. The presented software achieves up to 48% of the peak performance on shared memory architectures, outperforming by 9-14X what is considered to be state-of-the-art. On 48-core CPUs we observe speedups of 40-45X and measure up to 360 GFLOP/s over 840 GFLOP/s of the peak.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Quirk, J., Karni, S.: On the dynamics of a shock-bubble interaction. Journal of Fluid Mechanics 318, 129–163 (1996)

    Article  MATH  Google Scholar 

  2. Colella, P., Graves, D.T., Ligocki, T.J., Martin, D.F., Mondiano, D., Serafini, D.B., Van Straalen, B.: Chombo software package for amr applications design document. Technical report, Lawrence Berkeley National Laboratory (2003)

    Google Scholar 

  3. Alam, J.M., Kevlahan, N.K.R., Vasilyev, O.V.: Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations. Journal of Computational Physics 214(2), 829–857 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rossinelli, D., Hejazialhosseini, B., Spampinato, D., Koumoutsakos, P.: Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids. SIAM J. Scientific Computing 33(2) (2011)

    Google Scholar 

  5. Cameron, K., Ge, R., Feng, X.: High-performance, power-aware distributed computing for scientific applications. Computer 38(11), 40–47 (2005)

    Article  Google Scholar 

  6. Luk, C.K., Newton, R., Hasenplaugh, W., Hampton, M., Lowney, G.: A Synergetic Approach to Throughput Computing on x86-Based Multicore Desktops. IEEE Softw. 28, 39–50 (2011)

    Article  Google Scholar 

  7. Puschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R., Rizzolo, N.: SPIRAL: Code Generation for DSP Transforms. Proceedings of the IEEE 93(2), 232–275 (2005)

    Article  Google Scholar 

  8. Shalf, J., Quinlan, D., Janssen, C.: Rethinking hardware-software codesign for exascale systems. IEEE Computer 44(11), 22–30 (2011)

    Article  Google Scholar 

  9. Chen, G., Chacón, L., Barnes, D.C.: An efficient mixed-precision, hybrid CPU-GPU implementation of a fully implicit particle-in-cell algorithm. ArXiv (2011)

    Google Scholar 

  10. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52, 65–76 (2009)

    Article  Google Scholar 

  11. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - A Portable Implementation of the High-Performance Linpack Benchmark for Distributed-Memory Computers

    Google Scholar 

  12. Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: a high-performance Java dialect. CCPE 10(11-13), 825–836 (1998)

    Google Scholar 

  13. Van Straalen, B., Shalf, J., Ligocki, T., Keen, N., Yang, W.S.: Scalability challenges for massively parallel amr applications. In: IEEE International Symposium on Parallel Distributed Processing, pp. 1–12 (2009)

    Google Scholar 

  14. Prosperetti, A., Tryggvason, G. (eds.): Computational Methods for Multiphase Flow. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  15. Jiang, G., Shu, C.: Efficient implementation of weighted ENO schemes. Journal of Computational Physics 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wendroff, B.: Approximate Riemann solvers, Godunov schemes and contact discontinuities. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications, pp. 1023–1056. Kluwer Academic/Plenum Publ. (2001)

    Google Scholar 

  17. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In: SC 2008, pp. 4:1–4:12. IEEE Press (2008)

    Google Scholar 

  18. AMD Inc.: Software Optimization Guide for the AMD 15h Family (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hejazialhosseini, B., Conti, C., Rossinelli, D., Koumoutsakos, P. (2013). High Performance CPU Kernels for Multiphase Compressible Flows. In: Daydé, M., Marques, O., Nakajima, K. (eds) High Performance Computing for Computational Science - VECPAR 2012. VECPAR 2012. Lecture Notes in Computer Science, vol 7851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38718-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38718-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38717-3

  • Online ISBN: 978-3-642-38718-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics