Abstract
The subword complexity of an infinite word counts the number of subwords of a given length, while the abelian complexity counts this number up to letter permutation. Although a lot of research has been done on the subword complexity of morphic words, i.e., words obtained as fixed points of iterated morphisms, little is known on their abelian complexity. In this paper, we undertake the classification of the asymptotic growths of the abelian complexities of fixed points of binary morphisms. Some general results we obtain stem from the concept of factorization of morphisms. We give an algorithm that yields all canonical factorizations of a given morphism, describe how to use it to check quickly whether a binary morphism is Sturmian, discuss how to fully factorize the Parry morphisms, and finally derive a complete classification of the abelian complexities of fixed points of uniform binary morphisms.
This material is based upon work supported by the National Science Foundation under Grant No. DMS–1060775. A World Wide Web server interface has been established at www.uncg.edu/cmp/research/abeliancomplexity2 for automated use of the programs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003)
Balková, L., Břinda, K., Turek, O.: Abelian complexity of infinite words associated with quadratic Parry numbers. Theoret. Comput. Sci. 412, 6252–6260 (2011)
Berstel, J., Séébold, P.: A characterization of Sturmian morphisms. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 281–290. Springer, Heidelberg (1993)
Choffrut, C., Karhumäki, J.: Combinatorics of Words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, ch. 6, pp. 329–438. Springer, Berlin (1997)
Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Systems Theory 7, 138–153 (1973)
Currie, J., Rampersad, N.: Recurrent words with constant abelian complexity. Adv. Appl. Math. 47, 116–124 (2011)
Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes of deterministic developmental languages without interactions. Theoret. Comput. Sci. 1, 59–75 (1975)
Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of D0L languages with a constant distribution. Inform. Process. Lett. 13, 108–113 (1981)
Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of square-free D0L languages. Theoret. Comput. Sci. 16, 25–32 (1981)
Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of locally catenative D0L languages. Inform. Process. Lett. 16, 121–124 (1983)
Frid, A.E.: The subword complexity of fixed points of binary uniform morphisms. In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 179–187. Springer, Heidelberg (1997)
Pansiot, J.J.: Complexité des facteurs des mots infinis engendrés par morphismes itérés. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 380–389. Springer, Heidelberg (1984)
Richomme, G.: Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words. Theoret. Comput. Sci. 380, 393–400 (2007)
Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts. J. London Math. Soc. 83, 79–95 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blanchet-Sadri, F., Fox, N. (2013). On the Asymptotic Abelian Complexity of Morphic Words. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-38771-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38770-8
Online ISBN: 978-3-642-38771-5
eBook Packages: Computer ScienceComputer Science (R0)