Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Asymptotic Abelian Complexity of Morphic Words

  • Conference paper
Developments in Language Theory (DLT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7907))

Included in the following conference series:

Abstract

The subword complexity of an infinite word counts the number of subwords of a given length, while the abelian complexity counts this number up to letter permutation. Although a lot of research has been done on the subword complexity of morphic words, i.e., words obtained as fixed points of iterated morphisms, little is known on their abelian complexity. In this paper, we undertake the classification of the asymptotic growths of the abelian complexities of fixed points of binary morphisms. Some general results we obtain stem from the concept of factorization of morphisms. We give an algorithm that yields all canonical factorizations of a given morphism, describe how to use it to check quickly whether a binary morphism is Sturmian, discuss how to fully factorize the Parry morphisms, and finally derive a complete classification of the abelian complexities of fixed points of uniform binary morphisms.

This material is based upon work supported by the National Science Foundation under Grant No. DMS–1060775. A World Wide Web server interface has been established at www.uncg.edu/cmp/research/abeliancomplexity2 for automated use of the programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003)

    Google Scholar 

  2. Balková, L., Břinda, K., Turek, O.: Abelian complexity of infinite words associated with quadratic Parry numbers. Theoret. Comput. Sci. 412, 6252–6260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berstel, J., Séébold, P.: A characterization of Sturmian morphisms. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 281–290. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  4. Choffrut, C., Karhumäki, J.: Combinatorics of Words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, ch. 6, pp. 329–438. Springer, Berlin (1997)

    Chapter  Google Scholar 

  5. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Systems Theory 7, 138–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Currie, J., Rampersad, N.: Recurrent words with constant abelian complexity. Adv. Appl. Math. 47, 116–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes of deterministic developmental languages without interactions. Theoret. Comput. Sci. 1, 59–75 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of D0L languages with a constant distribution. Inform. Process. Lett. 13, 108–113 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of square-free D0L languages. Theoret. Comput. Sci. 16, 25–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of locally catenative D0L languages. Inform. Process. Lett. 16, 121–124 (1983)

    Article  MathSciNet  Google Scholar 

  11. Frid, A.E.: The subword complexity of fixed points of binary uniform morphisms. In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 179–187. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Pansiot, J.J.: Complexité des facteurs des mots infinis engendrés par morphismes itérés. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 380–389. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  13. Richomme, G.: Conjugacy of morphisms and Lyndon decomposition of standard Sturmian words. Theoret. Comput. Sci. 380, 393–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts. J. London Math. Soc. 83, 79–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blanchet-Sadri, F., Fox, N. (2013). On the Asymptotic Abelian Complexity of Morphic Words. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38771-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38770-8

  • Online ISBN: 978-3-642-38771-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics