Abstract
Opinion mining has increasingly become a valuable practice to grasp public opinions towards various products and related features. However, for the same feature, people may express it using different but related words and phrases. It is helpful to categorize these words and phrases, which are domain synonyms, under the same feature group to produce an effective opinion summary. In this paper, we propose a novel semi-supervised product features categorization strategy using constrained spectral clustering. Different from existing methods that cluster product features using lexical and distributional similarities, we exploit the morphological and contextual characteristics between product features as prior constraints knowledge to enhance the categorizing process. Experimental evaluation on real-life dataset demonstrates that our proposed method achieves better results compared with the baselines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, pp. 342–351 (2005)
Guo, H., Zhu, H., Guo, Z., et al.: Product feature categorization with multilevel latent semantic association. In: Proceeding of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 1087–1096 (2009)
Su, Q., Xu, X., Guo, H., et al.: Hidden sentiment association in chinese web opinion mining. In: Proceedings of the 17th International Conference on World Wide Web, WWW 2008, pp. 959–968 (2008)
Carenini, G., Ng, R.T., Zwart, E.: Extracting knowledge from evaluative text. In: Proceedings of the 3rd International Conference on Knowledge Capture, K-CAP 2005, pp. 11–18 (2005)
Huang, S., Liu, X., Peng, X., et al.: Fine-grained product features extraction and categorization in reviews opinion mining. In: Proceedings of 2012 IEEE 12th International Conference on Data Mining Workshops, ICDM 2012, pp. 680–686 (2012)
Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th International Conference on World Wide Web, WWW 2008, pp. 111–120 (2008)
Zhao, W.X., Jiang, J., Yan, H., Li, X.: Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, EMNLP 2010, pp. 56–65 (2010)
Zhai, Z., Liu, B., Xu, H., Jia, P.: Constrained LDA for grouping product features in opinion mining. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part I. LNCS, vol. 6634, pp. 448–459. Springer, Heidelberg (2011)
Zhai, Z., Liu, B., Xu, H., Jia, P.: Clustering product features for opinion mining. In: Proceedings of the fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 347-354 (2011)
Lu, Z., Ip, H.H.S.: Constrained spectral clustering via exhaustive and efficient constraint propagation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 1–14. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huang, S., Niu, Z., Shi, Y. (2013). Product Features Categorization Using Constrained Spectral Clustering. In: Métais, E., Meziane, F., Saraee, M., Sugumaran, V., Vadera, S. (eds) Natural Language Processing and Information Systems. NLDB 2013. Lecture Notes in Computer Science, vol 7934. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38824-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-38824-8_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38823-1
Online ISBN: 978-3-642-38824-8
eBook Packages: Computer ScienceComputer Science (R0)