Abstract
We propose a new approach for statistical shape analysis of 3D anatomical objects based on features extracted from skeletons. Like prior work on medial representations [7,15,9], the approach involves deforming a template to target shapes in a way that preserves the branching structure of the skeleton and provides intersubject correspondence. However, unlike medial representations, which parameterize the skeleton surfaces explicitly, our representation is boundary-centric, and the skeleton is implicit. Similar to prior constrained modeling methods developed 2D objects [8] or tube-like 3D objects [13], we impose symmetry constraints on tuples of boundary points in a way that guarantees the preservation of the skeleton’s topology under deformation. Once discretized, the problem of deforming a template to a target shape is formulated as a quadratically constrained quadratic programming problem. The new technique is evaluated in terms of its ability to capture the shape of the corpus callosum tract extracted from diffusion-weighted MRI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bastin, M.E., Maniega, S.M., Ferguson, K.J., Brown, L.J., Wardlaw, J.M., MacLullich, A.M.J., Clayden, J.D.: Quantifying the effects of normal ageing on white matter structure using unsupervised tract shape modelling. Neuroimage 51(1), 1–10 (2010)
Blum, H.: A transformation for extracting new descriptors of shape. In: Models for the Perception of Speech and Visual Form. MIT Press (1967)
Bouix, S., Pruessner, J.C., Louis Collins, D., Siddiqi, K.: Hippocampal shape analysis using medial surfaces. Neuroimage 25(4), 1077–1089 (2005)
Giblin, P.J., Kimia, B.B.: On the intrinsic reconstruction of shape from its symmetries. IEEE T. Pattern Anal. 25(7), 895–911 (2003)
Hayasaka, S., Nichols, T.E.: Combining voxel intensity and cluster extent with permutation test framework. Neuroimage 23(1), 54–63 (2004)
Loop, C.T.: Smooth subdivision surfaces based on triangles. Master’s thesis, Department of Mathematics, University of Utah, Salt Lake City (1987)
Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable m-reps for 3D medical image segmentation. Int. J. Comput. Vision 55(2), 85–106 (2003)
Sebastian, T.B., Tek, H., Crisco, J.J., Kimia, B.B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med. Image Anal. 7(1), 21–45 (2003)
Siddiqi, K., Pizer, S.: Medial representations: mathematics, algorithms and applications, vol. 37. Springer (2008)
Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Med. Image Anal. 7(3), 207–220 (2003)
Sun, H., Frangi, A.F., Wang, H., Sukno, F.M., Tobon-Gomez, C., Yushkevich, P.A.: Automatic Cardiac MRI Segmentation Using a Biventricular Deformable Medial Model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 468–475. Springer, Heidelberg (2010)
Terriberry, T.B., Gerig, G.: A Continuous 3-D Medial Shape Model With Branching. In: International Workshop on Mathematical Foundations of Computational Anatomy MFCA 2006, in Conjunction with MICCAI 2006 (2006)
Terzopoulos, D., Witkin, A., Kass, M.: Symmetry-seeking models and 3D object reconstruction. Int. J. Comput. Vision 1(3), 211–221 (1988)
Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57 (2006)
Yushkevich, P.A., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imaging 25(2), 1547–1564 (2006)
Zeng, X., Staib, L.H., Schultz, R.T., Duncan, J.S.: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Trans. Med. Imaging 18(10), 927–937 (1999)
Zhang, H., Awate, S.P., Das, S.R., Woo, J.H., Melhem, E.R., Gee, J.C., Yushkevich, P.A.: A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features. Med. Image Anal. (May 2010)
Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10(5), 764–785 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yushkevich, P.A., Zhang, H.G. (2013). Deformable Modeling Using a 3D Boundary Representation with Quadratic Constraints on the Branching Structure of the Blum Skeleton. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)