Abstract
Heart diseases are a leading cause of death worldwide, making a prompt and accurate diagnosis of cardiac functionality an important task. Recordings of cardiac outflow Doppler velocity profiles, obtained during an echocardiographic examination, are important to quantify hemodynamics and infer cardiac function. For automated segmentation and quantification of these images, a statistical atlas based approach has been proposed previously. Since acquiring a sufficient amount of data for an atlas can be a slow process in clinical practice and possibly result in a small and/or not representative dataset, we present an alternative approach for construction of the statistical atlas. This approach is based on simulating data from virtual patients, using a lumped computational model (CircAdapt), which incorporates knowledge of physiological processes in the human circulatory system under both normal and pathological conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Commowick, O., Malandain, G.: Evaluation of atlas construction strategies in the context of radiotherapy planning. In: SA2PM Workshop (From Statistical Atlases to Personalized Models) Held in Conjunction with MICCAI (2006)
Gruslys, A., Sawiak, S., Ansorge, R.: 3000 non-rigid medical image registrations overnight on a single PC. In: Nuclear Science Symposium and Medical Imaging Conference 2011 (NSS/MIC), pp. 3073–3080 (2011)
Wang, Q., D’Agostino, E., Seghers, D., Maes, F., Vandermeulen, D., Suetens, P.: Construction and validation of statistical brain atlases for atlas-based brain image segmentation. KULeuven, ESAT (2005)
Marsland, S., Twining, C.J., Taylor, C.J.: Groupwise Non-rigid Registration Using Polyharmonic Clamped-Plate Splines. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 771–779. Springer, Heidelberg (2003)
Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V.: Rueckert. D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. Neuroimage 46(3), 726–738 (2009)
Gubern-Merida, A., Marti, R.: Atlas based segmentation of the prostate in MR images. In: Proc. of MICCAI 2009: Segmentation Challenge Workshop (2009)
Tschirren, J., Lauer, R.M., Sonka, M.: Automated analysis of doppler ultrasound velocity flow diagrams. IEEE Trans. Med. Imaging 20, 1422–1425 (2001)
Bermejo, J., Antoranz, J.C., García-Fernández, M.A., Moreno, M.M., Delcán, J.L.: Flow dynamics of stenotic aortic valves assessed by signal processing of doppler spectrograms. Am. J. Cardiol., 611–617 (2000)
Kalinić, H., Lončarić, S., Čikes, M., Miličić, D., Bijnens, B.: Image registration and atlas-based segmentation of cardiac outflow velocity profiles. Comput. Methods Programs Biomed. 106(3), 188–200 (2012)
NSR Physiome Project, NSR Physiome Models (2012), http://www.physiome.org/Models (accessed: June 2012)
Kerckhoffs, R.C.P., Lumens, J., Vernooy, K., Omens, J.H., Mulligan, L.J., Delhaas, T., Arts, T., McCulloch, A.D., Prinzend, F.W.: Cardiac resynchronization: Insight from experimental and computational models. Prog. Biophys. Mol. Biol. 97(2-3), 543–561 (2008)
Sotiropoulos, F., Borazjani, I.: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47(3), 245–256 (2009)
Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., Prinzen, F.: Adaptation to mechanical load determines shape and properties of heart and circulation: the Circ-Adapt model. Am. J. Physiol. Heart. Circ. Physiol. 288(4), 1943–1954 (2005)
Lumens, J., Delhaas, T., Kirn, B., Arts, T.: Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann. Biomed. Eng. 37(11), 2234–2255 (2009)
Palau-Caballero, G., Tobon-Gomez, C., Balicevic, V., Butakoff, C., Loncaric, S., Sitges, M., Bijnens, B.H.: Improving clinical translation of cardiovascular circulatory models through an intuitive graphical user interface to circAdapt, presenting simulation results as clinical images and signals. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 345–354. Springer, Heidelberg (2013)
Baumgartner, H., Hung, J., Bermejo, J., Chambers, J.B., Evangelista, A., Griffin, B.P., Iung, B., Otto, C.M., Pellikka, P.A., Quiones, M.: Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur. J. Echocardiogr. 10(1), 1–25 (2009)
Graebel, W.P.: Engineering Fluid Mechanics. Taylor & Francis (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baličević, V. et al. (2013). Atlas Construction for Cardiac Velocity Profiles Segmentation Using a Lumped Computational Model of Circulatory System. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-38899-6_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38898-9
Online ISBN: 978-3-642-38899-6
eBook Packages: Computer ScienceComputer Science (R0)