Abstract
In this paper we address the problem of finding similar coronary angiograms from a database of angiograms using a new constrained nonrigid shape model for the description of coronary arteries. The model captures the non-rigid variations in the artery shapes while still preserving the overall perceptual spatial layout based on the articulation constraints between arteries. Shape matching involves testing for class membership using the constraints specified in the model. The shape similarity method is demonstrated in a similarity retrieval application on a large database of angiogram images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Medis medical imaging systems, Inc., http://www.medis.nl/index.htm
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. PAMI 24, 509–522 (2002)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Grauman, K., Darrell, T.: The pyramid match kernel: Efficient learning with sets of features. Journal of Machine Learning Research, 725–760 (2007)
Haris, K., Efstratiadis, S., Maglaveras, N., Pappas, C., Gourassas, J., Louridas, G.: Model-based morphological segmentation and labeling of coronary angiograms. IEEE-TMI 18(10), 1003–1015 (1999)
Perfetti, R., Ricci, E., Casali, D., Costantini, G.: A cnn based algorithm for retinal vessel segmentation. In: ICC 2008: Proceedings of the 12th WSEAS International Conference on Circuits, pp. 152–157 (2008)
Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. IEEE Medical Image Analysis, 143–168 (1998)
Syeda-Mahmood, T., Beymer, D., Wang, F.: Shape-based matching of ECG recordings. IEEE EMBC, 2012–2018 (2007)
Syeda-Mahmood, T., Beymer, D., Wang, F., Mahmood, A., Lundstrom, R., Shafee, N., Holve, T.: Automatic selection of keyframes from angiogram videos. In: ICPR, pp. 4008–4011 (2010)
Syeda-Mahmood, T., Turaga, P., Beymer, D., Wang, F., Amir, A., Greenspan, H., Pohl, K.: Shape-based similarity retrieval of doppler images for clinical decision support. In: IEEE CVPR, pp. 855–862 (2010)
Cormen, T., et al.: Introduction to algorithms, p. 1985. MIT Press (1985)
Yeh, M., Cheng, K.T.: A string matching approach for visual retrieval and classification. In: ACM-MIR (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Syeda-Mahmood, T., Compas, C.B., Beymer, D., Kumar, R. (2013). Similarity Retrieval of Angiogram Images BASED on a Flexible Shape Model. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-38899-6_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38898-9
Online ISBN: 978-3-642-38899-6
eBook Packages: Computer ScienceComputer Science (R0)