Abstract
Spatially discordant T-wave alternans (TWA) has been shown to be linked to the genesis of ventricular fibrillation. Identification of discordant TWA through spatial characterization of TWA patterns in the heart has the potential to improve sudden cardiac death risk stratification. In this paper we present a method to solve a new variant of the inverse problem in electrocardiography that is tailored to estimate the TWA regions on the heart from non-invasive measurements on the body surface. We evaluate our method using both body surface potentials synthesized from heart surface potentials generated with ECGSIM and from potentials measured on a canine heart, and we show that this method detects the main regions in the heart undergoing TWA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rosenbaum, D., Jackson, L., Smith, J., Garan, H., Ruskin, J., Cohen, R.: Electrical alternans and vulnerability to ventricular arrythmias. New. Engl. J. Med. 330(4), 235–241 (1994)
Romero, I., Grubb, N., Clegg, G., Robertson, C., Addison, P., Watson, J.: T-wave alternans found in preventricular tachyarrhythmias in CCU patients using a wavelet transform-based methodology. IEEE T. Bio-Med. Eng. 55, 2658–2665 (2008)
Hunt, A.: T Wave Alternans in high arrhythmic risk patients: analysis in time and frequency domains: a pilot study. BMC Cardiov. Dis. 2, 6 (2002)
MartÃnez, J., Olmos, S.: Methodological principles of T wave alternans analysis: a unified framework. IEEE T. Bio-Med. Eng. 52, 599–613 (2005)
Karma, A.: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4(3), 461–472 (1996)
Weiss, J., Karma, A., Shiferaw, Y., Chen, P., Garfinkel, A., Qu, Z.: From pulsus to pulseless: the saga of cardiac alternans. Circ. Res. 98(10), 1244–1253 (2006)
Pastore, J.M., Girouard, S.D., Laurita, K.R., Akar, F.G., Rosenbaum, D.S.: Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circ. 99, 1385–1394 (1999)
MartÃnez, J., Olmos, S., Wagner, G., Laguna, P.: Characterization of repolarization alternans during ischemia: time-course and spatial analysis. IEEE T. Bio-Med. Eng. 53, 701–711 (2006)
Janusek, D., Kania, M., Zaczek, R., Zavala-Fernandez, H., Zbieć, A., Opolski, G., Maniewski, R.: Application of Wavelet Based Denoising for T-Wave Alternans Analysis in High Resolution ECG Maps. Meas. Sci. Rev. 11, 181–184 (2011)
Sassi, R., Mainardi, L.: Refined Estimate of the Dominant T-Wave. Cinc. (5), 845–848 (2010)
Sassi, R., Mainardi, L., Cerutti, S.: Amplitude of Dominant T Wave Alternans assessment on ECGs obtained from a biophysical model. In: EMBS, vol. (8), pp. 5872–5875 (September 2011)
Oostendorp, T., van Oosterom, A.: Ecgsim: an interactive tool for the study of the relation between the electric activity of the heart and the qrst waveforms at the body surface. In: IEMBS, vol. 2, pp. 3559–3562 (September 2004)
Janusek, D., Kania, M., Kepski, R., Maniewski, R.: Simulation of T-Wave Alternans and its Relation to the Duration of Ventricular Action Potentials Disturbance. Therapy, 21–27 (2010)
Adachi, K., Ohnishi, Y., Shima, T., Yamashiro, K., Takei, A., Tamura, N., Yokoyama, M.: Determinant of microvolt-level t-wave alternans in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 34(2), 374–380 (1999)
Gold, M., Bloomfield, D., Anderson, K., El-Sherif, N., Wilber, D., Groh, W., Estes, N.R., Kaufman, E., Greenberg, M., Rosenbaum, D.: A comparison of t-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J. Am. Coll. Cardiol. 36(7), 2247–2253 (2000)
Smith, J., Clancy, E.A., Valeri, C., Ruskin, J., Cohen, R.: Electrical alternans and cardiac electrical instability. Circ. 77, 110–121 (1988)
Madias, J.: T-wave alternans and the confounding role of the T-wave amplitude. Journal of Electrocardiology 45, 294–295 (2012)
MacLeod, R., Buist, M.: The forward problem of electrocardiography. In: Comp. Elec. Springer (2010)
Pullan, A., Cheng, L., Nash, M., Ghodrati, A., MacLeod, R., Brooks, D.: The inverse problem of electrocardiography. In: Comp. Elec. Springer (2010)
Erem, B., Brooks, D.: Differential geometric approximation of the gradient and hessian on a triangulated manifold. In: ISBI (2011)
Hansen, C.: Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms 6(1), 1–35 (1994)
SCI Institute, SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging Institute (SCI) (2013), http://www.scirun.org
MacLeod, R., Stinstra, J., Lew, S., Whitaker, R., Swenson, D., Cole, M., Krueger, J., Brooks, D., Johnson, C.: Subject-specific, multiscale simulation of electrophysiology: a software pipeline for image-based models and application examples. Philos. T. R. Soc. A 367(1896), 2293–2310 (2009)
MartÃnez-Orellana, R., Erem, B., Brooks, D.H.: Time Invariant Multielectrode Averaging For Biomedical Signals. In: ICASSP (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coll-Font, J., Erem, B., Karma, A., Brooks, D.H. (2013). An Inverse Spectral Method to Localize Discordant Alternans Regions on the Heart from Body Surface Measurements. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-38899-6_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38898-9
Online ISBN: 978-3-642-38899-6
eBook Packages: Computer ScienceComputer Science (R0)