Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximating Shortest Superstring Problem Using de Bruijn Graphs

  • Conference paper
Combinatorial Pattern Matching (CPM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Included in the following conference series:

Abstract

The best known approximation ratio for the shortest superstring problem is \(2\frac{11}{23}\) (Mucha, 2012). In this note, we improve this bound for the case when the length of all input strings is equal to r, for r ≤ 7. E.g., for strings of length 3 we get a \(1\frac{1}{3}\)-approximation. An advantage of the algorithm is that it is extremely simple both to implement and to analyze. Another advantage is that it is based on de Bruijn graphs. Such graphs are widely used in genome assembly (one of the most important practical applications of the shortest common superstring problem). At the same time these graphs have only a few applications in theoretical investigations of the shortest superstring problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armen, C., Stein, C.: A \(2\frac{3}{4}\)-Approximation Algorithm for the Shortest Superstring Problem. Tech. rep., Dartmouth College, Hanover, NH, USA (1994)

    Google Scholar 

  2. Armen, C., Stein, C.: Improved length bounds for the shortest superstring problem. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 494–505. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  3. Armen, C., Stein, C.: A \(2\frac{2}{3}\)-Approximation for the Shortest Superstring Problem. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 87–101. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  4. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest superstrings. In: Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 328–336. ACM, New York (1991)

    Chapter  Google Scholar 

  5. Breslauer, D., Jiang, T., Jiang, Z.: Rotations of periodic strings and short superstrings. J. Algorithms 24(2), 340–353 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christofides, N., Campos, V., Corberan, A., Mota, E.: An algorithm for the Rural Postman problem on a directed graph. In: Netflow at Pisa, Mathematical Programming Studies, vol. 26, pp. 155–166. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  7. Crochemore, M., Cygan, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Algorithms for three versions of the shortest common superstring problem. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 299–309. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Czumaj, A., Gasieniec, L., Piotrow, M., Rytter, W.: Parallel and sequential approximation of shortest superstrings. In: Schmidt, E.M., Skyum, S. (eds.) SWAT 1994. LNCS, vol. 824, pp. 95–106. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  9. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc Routing Problems, Part II: The Rural Postman Problem. Operations Research 43(3), 399–414 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. Journal of Computer and System Sciences 20(1), 50–58 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Groves, G., van Vuuren, J.: Efficient heuristics for the Rural Postman Problem. ORiON 21(1), 33–51 (2005)

    Article  Google Scholar 

  12. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs. J. ACM 52, 602–626 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Inf. Process. Lett. 93(1), 13–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karpinski, M., Schmied, R.: Improved Lower Bounds for the Shortest Superstring and Related Problems. CoRR abs/1111.5442v3 (2012)

    Google Scholar 

  15. Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, SFCS 1994, pp. 166–177. IEEE Computer Society, Washington, DC (1994)

    Chapter  Google Scholar 

  16. Mucha, M.: Lyndon Words and Short Superstrings. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  17. Ott, S.: Lower bounds for approximating shortest superstrings over an alphabet of size 2. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, p. 55. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Paluch, K., Elbassioni, K., van Zuylen, A.: Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem. In: STACS 2012. LIPIcs, vol. 14, pp. 501–506 (2012)

    Google Scholar 

  19. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sahni, S., Gonzalez, T.: P-Complete Approximation Problems. J. ACM 23, 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sweedyk, Z.: \(2\frac{1}{2}\)-Approximation Algorithm for Shortest Superstring. SIAM J. Comput. 29(3), 954–986 (1999)

    Article  MathSciNet  Google Scholar 

  22. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing shortest common superstrings. Theoretical Computer Science 57(1), 131–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Teng, S.H., Yao, F.: Approximating shortest superstrings. In: Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science, SFCS 1993, pp. 158–165. IEEE Computer Society, Washington, DC (1993)

    Chapter  Google Scholar 

  24. Turner, J.S.: Approximation algorithms for the shortest common superstring problem. Information and Computation 83(1), 1–20 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vassilevska, V.: Explicit Inapproximability Bounds for the Shortest Superstring Problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 793–800. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golovnev, A., Kulikov, A.S., Mihajlin, I. (2013). Approximating Shortest Superstring Problem Using de Bruijn Graphs. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics