Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Lyndon Factorization of Grammar Compressed Text

  • Conference paper
Combinatorial Pattern Matching (CPM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Included in the following conference series:

  • 1112 Accesses

Abstract

We present an algorithm for computing the Lyndon factorization of a string that is given in grammar compressed form, namely, a Straight Line Program (SLP). The algorithm runs in O(n 4 + mn 3 h) time and O(n 2) space, where m is the size of the Lyndon factorization, n is the size of the SLP, and h is the height of the derivation tree of the SLP. Since the length of the decompressed string can be exponentially large w.r.t. n, m and h, our result is the first polynomial time solution when the string is given as SLP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications. Mathematical Systems Theory 28(2), 89–108 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Breslauer, D., Grossi, R., Mignosi, F.: Simple real-time constant-space string matching. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 173–183. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recognition 42(10), 2239–2246 (2009)

    Article  MATH  Google Scholar 

  4. Chemillier, M.: Periodic musical sequences and Lyndon words. Soft Comput. 8(9), 611–616 (2004)

    MATH  Google Scholar 

  5. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. The quotient groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)

    Article  MathSciNet  Google Scholar 

  6. Crochemore, M., Perrin, D.: Two-way string matching. J. ACM 38(3), 651–675 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daykin, J.W., Iliopoulos, C.S., Smyth, W.F.: Parallel RAM algorithms for factorizing words. Theor. Comput. Sci. 127(1), 53–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delgrange, O., Rivals, E.: STAR: an algorithm to search for tandem approximate repeats. Bioinformatics 20(16), 2812–2820 (2004)

    Article  Google Scholar 

  9. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Mathematics 23(3), 207–210 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. In: Proc. SODA 2011, pp. 362–372 (2011)

    Google Scholar 

  12. Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: Fast, simple, and deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Gawrychowski, P.: Faster algorithm for computing the edit distance between SLP-compressed strings. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 229–236. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Gil, J.Y., Scott, D.A.: A bijective string sorting transform. CoRR abs/1201.3077 (2012)

    Google Scholar 

  15. Goto, K., Bannai, H., Inenaga, S., Takeda, M.: Fast q-gram mining on SLP compressed strings. Journal of Discrete Algorithms 18, 89–99 (2013)

    Article  MathSciNet  Google Scholar 

  16. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for accelerating edit-distance computation via text-compression. In: Proc. STACS 2009, pp. 529–540 (2009)

    Google Scholar 

  17. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. PSC 2009, pp. 65–79 (2009)

    Google Scholar 

  18. Lifshits, Y.: Solving classical string problems an compressed texts. In: Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, vol. 06201 (2006)

    Google Scholar 

  19. Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Lyndon, R.C.: On Burnside’s problem. Transactions of the American Mathematical Society 77, 202–215 (1954)

    MathSciNet  MATH  Google Scholar 

  21. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  22. Mucha, M.: Lyndon words and short superstrings. In: Proc. SODA 2013, pp. 958–972 (2013)

    Google Scholar 

  23. Neuburger, S., Sokol, D.: Succinct 2D dictionary matching. Algorithmica, 1–23 (2012), 10.1007/s00453-012-9615-9

    Google Scholar 

  24. Provençal, X.: Minimal non-convex words. Theor. Comput. Sci. 412(27), 3002–3009 (2011)

    Article  MATH  Google Scholar 

  25. Yamamoto, T., Bannai, H., Inenaga, S., Takeda, M.: Faster subsequence and don’t-care pattern matching on compressed texts. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 309–322. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M. (2013). Efficient Lyndon Factorization of Grammar Compressed Text. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics