Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation of Grammar-Based Compression via Recompression

  • Conference paper
Combinatorial Pattern Matching (CPM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Included in the following conference series:

  • 1125 Accesses

Abstract

We present a simple linear-time algorithm constructing a context-free grammar of size \(\mathcal{O}(g \log (N/g))\) for the input string of size N, where g the size of the optimal grammar generating this string. The algorithm works for arbitrary size alphabets, but the running time is linear assuming that the alphabet Σ of the input string is a subset of {1,…, N c } for some constant c. Algorithms with such an approximation guarantees and running time are known, the novelty of this paper is the particular simplicity of the algorithm as well as the analysis of the algorithm, which uses a general technique of recompression recently introduced by the author. Furthermore, contrary to the previous results, this work does not use the LZ representation of the input string in the construction, nor in the analysis.

The full version of this paper is available at http://arxiv.org/abs/1301.5842

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Transactions on Information Theory 51(7), 2554–2576 (2005)

    Article  MathSciNet  Google Scholar 

  2. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity of suffix tree construction. J. ACM 47(6), 987–1011 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: Fast, simple, and deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Gąsieniec, L., Karpiński, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Jeż, A.: Faster fully compressed pattern matching by recompression. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 533–544. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Jeż, A.: The complexity of compressed membership problems for finite automata. Theory of Computing Systems, 1–34 (2013), http://dx.doi.org/10.1007/s00224-013-9443-6

  7. Jeż, A.: Recompression: a simple and powerful technique for word equations. In: Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 233–244. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2013), http://drops.dagstuhl.de/opus/volltexte/2013/3937

    Google Scholar 

  8. Kärkkäinen, J., Mikkola, P., Kempa, D.: Grammar precompression speeds up Burrows–Wheeler compression. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 330–335. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Karpiński, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short descriptions. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 205–214. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compression Conference, pp. 296–305. IEEE Computer Society (1999)

    Google Scholar 

  11. Lohrey, M., Mathissen, C.: Compressed membership in automata with compressed labels. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 275–288. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality tests in polylogarithmic time. Algorithmica 17(2), 183–198 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)

    Google Scholar 

  14. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. J. Discrete Algorithms 3(2-4), 416–430 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Storer, J.A., Szymanski, T.G.: The macro model for data compression. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) STOC, pp. 30–39. ACM (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeż, A. (2013). Approximation of Grammar-Based Compression via Recompression. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics