Abstract
The Longest Common Substring problem is to compute the longest substring which occurs in at least d ≥ 2 of m strings of total length n. In this paper we ask the question whether this problem allows a deterministic time-space trade-off using O(n 1 + ε) time and O(n 1 − ε) space for 0 ≤ ε ≤ 1. We give a positive answer in the case of two strings (d = m = 2) and 0 < ε ≤ 1/3. In the general case where 2 ≤ d ≤ m, we show that the problem can be solved in O(n 1 − ε) space and O( n 1 + εlog2 n (d log2 n + d 2)) time for any 0 ≤ ε < 1/3.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)
Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-Space Trade-Offs for Longest Common Extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 293–305. Springer, Heidelberg (2012)
Burkhardt, S., Kärkkäinen, J.: Fast Lightweight Suffix Array Construction and Checking. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 55–69. Springer, Heidelberg (2003)
Colbourn, C.J., Ling, A.C.H.: Quorums from difference covers. Inf. Process. Lett. 75(1-2), 9–12 (2000)
Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and Related Techniques for Geometry Problems. In: Proc. 16th STOC, pp. 135–143 (1984)
Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)
Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited and applications to approximate string searching. J. Discrete Algorithms 8(4), 418–428 (2010)
Janardan, R., Lopez, M.: Generalized Intersection Searching Problems. Int. J. Comput. Geom. Appl. 3(1), 39–69 (1993)
Karp, R.M., Rabin, M.O.: Efficient Randomized Pattern-Matching Algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987)
Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast Pattern Matching in Strings. SIAM J. Comput. 6(2), 323–350 (1977)
Puglisi, S.J., Turpin, A.: Space-Time Tradeoffs for Longest-Common-Prefix Array Computation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 124–135. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Starikovskaya, T., Vildhøj, H.W. (2013). Time-Space Trade-Offs for the Longest Common Substring Problem. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-38905-4_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38904-7
Online ISBN: 978-3-642-38905-4
eBook Packages: Computer ScienceComputer Science (R0)