Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Time-Space Trade-Offs for the Longest Common Substring Problem

  • Conference paper
Combinatorial Pattern Matching (CPM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Included in the following conference series:

Abstract

The Longest Common Substring problem is to compute the longest substring which occurs in at least d ≥ 2 of m strings of total length n. In this paper we ask the question whether this problem allows a deterministic time-space trade-off using O(n 1 + ε) time and O(n 1 − ε) space for 0 ≤ ε ≤ 1. We give a positive answer in the case of two strings (d = m = 2) and 0 < ε ≤ 1/3. In the general case where 2 ≤ d ≤ m, we show that the problem can be solved in O(n 1 − ε) space and O( n 1 + εlog2 n (d log2 n + d 2)) time for any 0 ≤ ε < 1/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-Space Trade-Offs for Longest Common Extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 293–305. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Burkhardt, S., Kärkkäinen, J.: Fast Lightweight Suffix Array Construction and Checking. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 55–69. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Colbourn, C.J., Ling, A.C.H.: Quorums from difference covers. Inf. Process. Lett. 75(1-2), 9–12 (2000)

    Article  MathSciNet  Google Scholar 

  5. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and Related Techniques for Geometry Problems. In: Proc. 16th STOC, pp. 135–143 (1984)

    Google Scholar 

  6. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  7. Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited and applications to approximate string searching. J. Discrete Algorithms 8(4), 418–428 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Janardan, R., Lopez, M.: Generalized Intersection Searching Problems. Int. J. Comput. Geom. Appl. 3(1), 39–69 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karp, R.M., Rabin, M.O.: Efficient Randomized Pattern-Matching Algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast Pattern Matching in Strings. SIAM J. Comput. 6(2), 323–350 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Puglisi, S.J., Turpin, A.: Space-Time Tradeoffs for Longest-Common-Prefix Array Computation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 124–135. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Starikovskaya, T., Vildhøj, H.W. (2013). Time-Space Trade-Offs for the Longest Common Substring Problem. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics