Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Small Induction Recursion

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7941))

Included in the following conference series:

Abstract

There are several different approaches to the theory of data types. At the simplest level, polynomials and containers give a theory of data types as free standing entities. At a second level of complexity, dependent polynomials and indexed containers handle more sophisticated data types in which the data have an associated indices which can be used to store important computational information. The crucial and salient feature of dependent polynomials and indexed containers is that the index types are defined in advance of the data. At the most sophisticated level, induction-recursion allows us to define data and indices simultaneously.

This work investigates the relationship between the theory of small inductive recursive definitions and the theory of dependent polynomials and indexed containers. Our central result is that the expressiveness of small inductive recursive definitions is exactly the same as that of dependent polynomials and indexed containers. A second contribution of this paper is the definition of morphisms of small inductive recursive definitions. This allows us to extend our main result to an equivalence between the category of small inductive recursive definitions and the category of dependent polynomials/indexed containers. We comment on both the theoretical and practical ramifications of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, M., Altenkirch, T., Ghani, N.: Containers. Constructing Strictly Positive Types. TCS 342, 3–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenkirch, T., Morris, P.: Indexed containers. In: Procs. of the 24th Annual IEEE Symposium on Logic in Computer Science (LICS 2009). IEEE Computer Society (2009)

    Google Scholar 

  3. Aczel, P.: An introduction to inductive definition. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  4. Bove, A., Capretta, V.: Nested General Recursion and Partiality in Type Theory. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 121–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Clairambault, P., Dybjer, P.: The Biequivalence of Locally Cartesian Closed Category and Martin Löf Type Theories. Arxiv:1112.3456v1 [cs.LO] (December 15, 2011)

    Google Scholar 

  6. Coquand, T., Dybjer, P.: Inductive Definitions and Type Theory an Introduction. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 60–76. Springer, Heidelberg (1994)

    Google Scholar 

  7. Curien, P.-L.: Substitution up to isomorphism. Fundamenta Informaticae 19(1-2), 51–86 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in type theory. Journal of Symbolic Logic 65(2), 525–549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dybjer, P., Setzer, A.: A Finite Axiomatization of Inductive-Recursive Definitions. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Dybjer, P., Setzer, A.: Induction-recursion and initial algebras. Annales of Pure and Applied Logic 124, 1–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dybjer, P., Setzer, A.: Indexed Induction-Recursion. Journal of Logic and Algebraic Programming 66(1), 1–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gambino, N., Hyland, M.: Wellfounded trees and dependent polynomial functors. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 210–225. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Gambino, N., Kock, J.: Polynomial functors and polynomial monads. Arxiv:0906.4931v2 [math.CT] (March 6, 2010)

    Google Scholar 

  14. Hofmann, M.: On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 427–441. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  15. Kock, J.: Notes on Polynomial functors, http://www.mat.uab.es/~kock/cat/polynomial.html

  16. Mac Lane, S.: Categories for the working mathematician, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  17. Martin-Löf, P.: An intuitionistic theory of types: Predicative part. In: Logic Colloquium 1973, pp. 73–118. North-Holland, Amsterdam (1973)

    Google Scholar 

  18. Moerdijk, I., Palmgren, E.: Wellfounded trees in categories. Annals of Pure and Applied Logic 104, 189–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seely, R.A.G.: Locally cartesian closed categories and type theory. Math. Proc. Cambridge Philos. Soc. (95), 33–48 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hancock, P., McBride, C., Ghani, N., Malatesta, L., Altenkirch, T. (2013). Small Induction Recursion. In: Hasegawa, M. (eds) Typed Lambda Calculi and Applications. TLCA 2013. Lecture Notes in Computer Science, vol 7941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38946-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38946-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38945-0

  • Online ISBN: 978-3-642-38946-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics