Abstract
In a private database query system, a client issues queries to a database and obtains the results without learning anything else about the database and without the server learning the query. While previous work has yielded systems that can efficiently support disjunction queries, performing conjunction queries privately remains an open problem. In this work, we show that using a polynomial encoding of the database enables efficient implementations of conjunction queries using somewhat homomorphic encryption. We describe a three-party protocol that supports efficient evaluation of conjunction queries. Then, we present two implementations of our protocol using Paillier’s additively homomorphic system as well as Brakerski’s somewhat homomorphic cryptosystem. Finally, we show that the additional homomorphic properties of the Brakerski cryptosystem allow us to handle queries involving several thousand elements over a million-record database in just a few minutes, far outperforming the implementation using the additively homomorphic system.
Chapter PDF
Similar content being viewed by others
Keywords
- Single Instruction Multiple Data
- Inverted Index
- Conjunction Query
- Homomorphic Encryption
- Modular Reduction
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Innovations in ITCS 2012 (2012)
Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)
De Cristofaro, E., Lu, Y., Tsudik, G.: Efficient techniques for privacy-preserving sharing of sensitive information. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 239–253. Springer, Heidelberg (2011)
Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009), http://crypto.stanford.edu/craig
Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)
Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)
Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: STOC 1998, pp. 151–160 (1998)
Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)
Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)
Raykova, M., Cui, A., Vo, B., Liu, B., Malkin, T., Bellovin, S.M., Stolfo, S.J.: Usable, Secure, Private Search. IEEE Security and Privacy, 53–60 (October 2012)
Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations (2011), Manuscript at http://eprint.iacr.org/2011/133
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J. (2013). Private Database Queries Using Somewhat Homomorphic Encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds) Applied Cryptography and Network Security. ACNS 2013. Lecture Notes in Computer Science, vol 7954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38980-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-38980-1_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38979-5
Online ISBN: 978-3-642-38980-1
eBook Packages: Computer ScienceComputer Science (R0)