Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Reducing the Computation Time for BCI Using Improved ICA Algorithms

  • Conference paper
Advances in Neural Networks – ISNN 2013 (ISNN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7952))

Included in the following conference series:

Abstract

P300 is a popular characteristic potential for electroencephalogram(EEG) based brain-computer interface(BCI). In P300-BCI, the extraction of P300 is a very crucial operation. Independent component analysis(ICA) technique is suitable for P300 extraction. In this paper, aiming at the current large volume of EEG data, the applications of three ICA algorithms were proposed for P300 extraction and were compared. The experiments ran on real EEG data respectively. PI and recognition accuracy were checked. The results show artificial fish swarm algorithm based ICA(AFSA_ICA) can extract P300 faster, reducing the computation time for BCI with PI remaining better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hwang, H.J., Lim, J.H., Jung, Y.J., et al.: Development of an SSVEP-Based BCI Spelling System Adopting a QWERTY-Style LED Keyboard. J. Neurosci. Meth. 208, 59–65 (2012)

    Article  Google Scholar 

  2. Salvaris, M., Cinel, C., Citi, L., et al.: Novel Protocols for P300-Based Brain–Computer Interfaces. IEEE Trans. Neural Syst. and Rehab. Eng. 20, 8–17 (2012)

    Article  Google Scholar 

  3. Long, J.Y., Li, Y.Q., Yu, T.Y., Gu, Z.H.: Target Selection With Hybrid Feature for BCI-Based 2-D Cursor Control. IEEE Trans. Bio-med. Eng. 59, 132–140 (2012)

    Article  Google Scholar 

  4. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

  5. Hoffmann, U., Vesin, J.M., Ebrahimi, T., et al.: An Efficient P300-Based Brain-Computer Interface for Disabled Subjects. J. Neurosci. Meth. 167, 115–125 (2008)

    Article  Google Scholar 

  6. Comon, P.: Independent Component Analysis: A New Concept? Signal Process 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  7. Hyvärinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans. Neural Networ. 10, 626–634 (1999)

    Article  Google Scholar 

  8. Shinzawa, H., Jiang, J.H., Iwahashic, M.: Self-Modeling Curve Resolution(SMCR) by Particle Swarm Optimization(PSO). Anal. Chim. Acta. 595, 275–281 (2007)

    Article  Google Scholar 

  9. Li, X.L., Shao, Z.J., Qian, J.X.: An Optimizing Method Based on Autonomous Animats: Fish-Swarm Algorithm. Systems Engineering-Theory & Practice 22, 32–38 (2002)

    Google Scholar 

  10. Wang, B., Lu, W.K.: A Fixed Point ICA Algorithm with Initialization Constraint. In: Proceedings of 2005 International Conference on Communications, pp. 891–894. IEEE Press, Beijing (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, L., Wang, H. (2013). Reducing the Computation Time for BCI Using Improved ICA Algorithms. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7952. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39068-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39068-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39067-8

  • Online ISBN: 978-3-642-39068-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics